AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    caffe的深度学习训练全过程 更多内容
  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    障用户训练作业长稳运行 提供训练作业断点续训与增量训练能力,即使训练因某些原因中断,也可以基于checkpoint接续训练,保障需要长时间训练模型稳定性和可靠性,避免重头训练耗费时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生中间和结果等数据可以直接高速写入到SFS

    来自:帮助中心

    查看更多 →

  • 场景介绍

    略优化”技巧来避免过大策略更新,从而减少了训练过程中不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练方法。 它基于一个预先训练模型,通过调整模型参数,使其能够更好地拟合特定任务数据分布。

    来自:帮助中心

    查看更多 →

  • ModelArts

    华为云开发者学堂 华为云EI基于AI和大数据技术,通过云服务方式提供开放可信平台。 智能客服 您好!我是有问必答知识渊博 智能问答机器人 ,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户聚集地。这里有来自ModelArts服务技术牛人,为您解决技术难题。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了TensorflowPyTorch,MindSpore等常用深度学习任务基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里软件无法满足您程序运行需求时,您还可以基于这些基础镜像制作一个新镜像并进行训练训练作业预置框架介绍

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    交互。可通过如下方式进行调整优化。 优化原理 对于ModelArts提供GPU资源池,每个训练节点会挂载500GBNVMe类型SSD提供给用户免费使用。此SSD挂载到“/cache”目录,“/cache”目录下数据生命周期与训练作业生命周期相同,当训练作业运行结束以后“/

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值时遇到困难,导致数值精度损失。 综上所述,BF16因其与FP

    来自:帮助中心

    查看更多 →

  • 场景介绍

    略优化”技巧来避免过大策略更新,从而减少了训练过程中不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练方法。 它基于一个预先训练模型,通过调整模型参数,使其能够更好地拟合特定任务数据分布。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    向上前进步长参数。默认0.001。 数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长的参数。默认0

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    操作步骤-手机端: 登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值时遇到困难,导致数值精度损失。 综上所述,BF16因其与FP

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    供更好稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存占用,对模型准确性影响在大多数情况下较小。与BF16相比在处理非常大或非常小数值时遇到困难,导致数值精度损失。 综上所述,BF16因其与FP

    来自:帮助中心

    查看更多 →

  • 在CCE集群中部署使用Caffe

    在CCE集群中部署使用Caffe 预置条件 资源准备 Caffe分类范例 父主题: 批量计算

    来自:帮助中心

    查看更多 →

  • 场景介绍

    略优化”技巧来避免过大策略更新,从而减少了训练过程中不稳定性和样本复杂性。 指令监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练方法。 它基于一个预先训练模型,通过调整模型参数,使其能够更好地拟合特定任务数据分布。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    强模型泛化能力。取值范围:[0,1]。 给输入数据加噪音尺度 给输入数据加噪音尺度,定义了给输入数据加噪音尺度。这个值越大,添加噪音越强烈,模型正则化效果越强,但同时也可能会降低模型拟合能力。取值范围:[0,1]。 给输出数据加噪音概率 给输出数据加噪音概率,定

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应不同输出之间一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入惩罚项,旨在减少重复生成可能性。通过在计算损失函数(用于优化模型指标)时增加

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    )方式创建训练作业。 新版训练支持使用“自定义算法”、“我算法”、“我订阅”方式来创建训练作业。 新版训练创建方式有了更明确类别划分,选择方式和旧版训练存在区别。 旧版中使用“算法管理”中已保存算法创建训练作业用户,可以在新版训练中使用“我算法”创建训练作业。 旧版

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了