AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    alpha模型机器学习 更多内容
  • 成长地图

    了解更多常见问题、案例和解决方案 模型设计 如何创建连线关系? 如何快速复制元素? 如何表示元素父子关系? 如何实现图与图之间的关联跳转? 更多 模型管理 如何创建包? 如何创建自定义视图和模型? 如何配置自定义元素构造型? 更多 工程管理 如何查看自己的权限? 如何创建模型工程? 如何删除模型工程? 如何对模型工程进行版本管理?

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型

    来自:帮助中心

    查看更多 →

  • 安装机器人环境

    ad?type=trialactivation 输入ESN码,产品选择机器人助手,点击获取License按钮 图12 获取License按钮 点击导入下载的许可证 图13 导入下载的许可证 父主题: 网银机器人部署

    来自:帮助中心

    查看更多 →

  • 机器人管理配置指南

    机器人管理配置指南 快速入门 配置智能机器人 操作员:配置普通IVR 配置预置流程 父主题: 租户管理员指南

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 套餐包

    ModelArts服务支持购买套餐包,根据用户选择使用的资源不同进行收费。您可以根据业务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习和深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。 多模态模型 多模态模型是指能够处理多种类型数据(如文本、图像、音频等)的机器学习模型。这些模型可以将不同类型的数据进行融合和联合分析,从而实现更全面的理解和更准确的预测。多模态模型的应用非常广泛

    来自:帮助中心

    查看更多 →

  • 在模型广场查看模型

    ”或“部署”,可以直接使用模型进行训推。 当按钮置灰时,表示模型不支持该任务。 模型介绍 表1列举了ModelArts Studio大模型服务平台支持的模型清单,模型详细信息请查看界面介绍。 表1 模型广场的模型系列介绍 模型系列 模型类型 应用场景 支持语言 GLM-4 文本生成

    来自:帮助中心

    查看更多 →

  • 智慧大气智能化大气监测管治平台Alpha Maps

    智慧大气智能化大气监测管治平台Alpha Maps 登录界面及首页 数据采集平台操作说明 AI演算分析中心操作说明 智慧调度平台操作说明 智能决策中心 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 查询所有batch.volcano.sh/v1alpha1的API

    查询所有batch.volcano.sh/v1alpha1的API 功能介绍 查询所有batch.volcano.sh/v1alpha1的API 调用方法 请参见如何调用API。 URI GET /apis/batch.volcano.sh/v1alpha1 请求参数 表1 请求Header参数

    来自:帮助中心

    查看更多 →

  • COST04-02 主动监控成本

    成本趋势,避免异常发生。 相关服务和工具 创建预算提醒,将预算设置为提醒阈值,在预测或实际成本超出预算时,及时获取超预算通知,防止潜在成本超支。 创建成本监控,华为云成本中心的成本监控引入机器学习,对客户历史消费数据进行建模,对于不符合历史数据模型的成本增长,识别为异常成本记录,

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • ECS部署失败,报错“expected alphabetic or numeric character, but found '*'”

    E CS 部署失败,报错“expected alphabetic or numeric character, but found '*'” 问题现象 应用“phoenix-sample-standalone”部署失败,报错信息为“expected alphabetic or numeric character

    来自:帮助中心

    查看更多 →

  • ECS部署失败,报错“expected alphabetic or numeric character, but found '*'”

    ECS部署失败,报错“expected alphabetic or numeric character, but found '*'” 问题现象 应用“phoenix-sample-standalone”部署失败,报错信息为“expected alphabetic or numeric character

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习、深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 华为机器翻译(体验)

    华为机器翻译(体验) 华为云自言语言处理服务机器翻译功能。机器翻译(Machine Translation,简称MT),为用户提供快速准确的翻译服务,帮助用户跨语言沟通,可用于文档翻译等场景中,包含“文本翻译”和“语种识别”执行动作。 连接参数 华为机器翻译(体验)连接器无需认证,无连接参数。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    北京市1985年-2017年城镇化进度 支持多种经典机器学习分类算法,如K-Means、随机森林、正态贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了