GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    ai训练平台gpu 更多内容
  • 使用AutoGenome镜像

    读取配置文件:通过json文件配置输入和输出路径。 模型训练:针对提供的数据和模型参数,AutoGenome会搜索得到最优的神经网络结构。训练过程经过模型搜索阶段和模型训练阶段,在模型搜索阶段,根据json文件中的配置参数,对于选定的模型参数会训练一定步数,搜索得到较好结果的参数进行后续训练训练过程中可选择在验证数

    来自:帮助中心

    查看更多 →

  • 创建训练作业

    创建训练作业 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 ModelArts SDK不支持通过在AI Gallery中订阅的算法创建训练作业。 示例一:提交常用框架训练作业 Es

    来自:帮助中心

    查看更多 →

  • 查询训练作业版本列表

    String 资源规格CPU内存。 gpu Boolean 是否使用gpugpu_num Integer 资源规格gpu的个数。 gpu_type String 资源规格gpu的类型。 worker_server_num Integer 训练作业worker的个数。 data_url

    来自:帮助中心

    查看更多 →

  • 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)

    从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启 云服务器 ,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    cce_gpu_memory_used GPUGPU显存使用量 cce_gpu_memory_total GPUGPU显存总量 cce_gpu_memory_free GPUGPU显存空闲量 cce_gpu_bar1_memory_used GPUGPU bar1

    来自:帮助中心

    查看更多 →

  • AI平台咨询与规划服务的服务优势?

    AI平台咨询与规划服务服务优势? 优势项 优势介绍 丰富的行业经验 团队拥有大量的行业交付经验,具备各种复杂业务场景建模的经验和能力。 高效的研发力量 拥有在研发领域丰富经验且高效的研发团队,能快速帮助客户进行场景化建模方案分析和设计。 先进的服务理念 秉持以客户为中心的服务理念,专注解决客户业务的痛点问题。

    来自:帮助中心

    查看更多 →

  • 创建单机多卡的分布式训练(DataParallel)

    将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度 主GPU收集梯度并更新参数,将更新后的模型参数分发到各GPU 具体流程图如下: 图1 单机多卡数据并行训练 代码改造点 模型分发

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    定”完成训练作业创建。 进入“训练管理>训练作业”页面,等待训练作业完成。 训练作业运行需要几分钟时间,请耐心等待。根据经验,使用GPU资源时此样例在2分钟左右完成训练。 当训练作业的状态变更为“已完成”时,表示已运行结束。您可以单击训练作业名称,进入详情页面,了解训练作业的“配

    来自:帮助中心

    查看更多 →

  • XGPU共享技术概述

    XGPU共享技术是华为云基于内核虚拟GPU开发的共享技术。XGPU服务可以隔离GPU资源,实现多个容器共用一张显卡,从而实现业务的安全隔离,提高GPU硬件资源的利用率并降低使用成本。 XGPU共享技术架构 XGPU通过自研的内核驱动为容器提供虚拟的GPU设备,在保证性能的前提下隔离显存

    来自:帮助中心

    查看更多 →

  • 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU)

    0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练训练基础镜像列表

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型E CS GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    在模型详情页,选择“训练 > 微调大师”进入微调工作流页面。 选择训练任务类型 选择模型微调的训练任务类型。 当模型的“任务类型”是“文本问答”或“文本生成”时,“训练任务类型”默认和模型“任务类型”一致。“训练任务类型”支持修改,如果模型文件满足自定义模型规范(训练),则“训练任务类型”支持选择“自定义”。

    来自:帮助中心

    查看更多 →

  • 查看训练作业资源占用情况

    查看训练作业资源占用情况 如何查看训练作业资源使用详情 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。 在训练作业详情页面,单击“资源占用情况”页签查看计算节点的资源使用情况,最多可显示最近三天的

    来自:帮助中心

    查看更多 →

  • AI平台咨询与规划服务怎么收费的?

    AI平台咨询与规划服务怎么收费的? AI平台咨询与规划服务属于按需计费,且为一次性计费产品。 父主题: 关于服务购买

    来自:帮助中心

    查看更多 →

  • AI平台开发与实施服务怎么收费的?

    AI平台开发与实施服务怎么收费的? AI平台开发与实施服务属于按需计费,且为一次性计费产品。 父主题: 关于服务购买

    来自:帮助中心

    查看更多 →

  • 创建训练任务

    单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。 父主题:

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性 服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 约束与限制

    仅专属资源池支持使用Cloud Shell登录训练容器,且训练作业必须处于“运行中”状态。 在训练管理的“创建算法”页面,来源于AI Gallery中订阅的算法不支持另存为新算法。 训练作业卡死检测目前仅支持资源类型为GPU训练作业。 仅使用新版专属资源池训练时才支持设置训练作业优先级。公共资源池和

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了