AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    AI模型训练前数据预处理 更多内容
  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    of a custom kernel"”加“#”,即: # assert mask is None, "Mask is silently ignored due to the use of a custom kernel" 数据集下载和预处理。 本实践中选择使用1GB 79K-r

    来自:帮助中心

    查看更多 →

  • ModelArts Standard使用流程

    标注数据 发布数据集 开发调试 创建Notebook 创建一个Notebook作为开发环境,用于调试训练和推理代码。 建议先在开发环境中调试完成训练代码后再创建生产训练作业。 创建Notebook实例 训练模型 准备算法 创建训练作业需要先准备算法,可以订阅AI Gallery中的算法,也可以使用用户自己的算法。

    来自:帮助中心

    查看更多 →

  • 准备代码

    M-xxx.zip在本地解压缩后。在上传代码,需要对解压后的训练脚本代码进行修改。具体文件为:llm_train/AscendSpeed/scripts/obs_pipeline.sh,具体修改代码内容以及位置,如下所示。 训练作业中存在2个代码目录,一个是从OBS上传到ModelArts

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    metrics=['accuracy']) # training model.fit(train_images, train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 准备模型训练代码

    准备模型训练代码 预置框架启动文件的启动流程说明 开发用于预置框架训练的代码 开发用于 自定义镜像 训练的代码 自定义镜像训练作业配置节点间SSH免密互信 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

  • 模型训练存储加速

    当完成上传数据至OBS并预热到SFS Turbo中步骤后,在ModelArts Standard中创建训练作业时,设置训练“SFS Turbo”,在“文件系统”中选择SFS Turbo实例名称,并指定“存储位置”和“云上挂载路径”。系统会在训练作业启动,自动将存储位置中的文件目录挂载到训练容器中指定路径。

    来自:帮助中心

    查看更多 →

  • 模型训练计费项

    模型训练计费项 计费说明 在ModelArts进行模型训练时,会产生计算资源和存储资源的累计值计费。计算资源为训练作业运行的费用。存储资源包括数据存储到OBS或SFS的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。

    来自:帮助中心

    查看更多 →

  • 准备代码

    # 模型名称 |── data # 预处理数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练任务

    SFT全参微调训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练任务

    SFT全参微调训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练任务

    SFT全参微调训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • 模型测试

    模型测试 将样例数据中的测试数据集加载至当前学件项目中,进行数据预处理,并基于训练出的模型进行效果验证。 单击界面左下角的“加载数据”,弹出“加载数据”代码框,如图1所示。 需要配置的参数如下所示,其余参数保持默认值即可。 数据集:从下拉框中选择数据集“samples”。 数据

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练任务

    SFT全参微调训练任务 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • 准备代码

    # 模型名称 |── data # 预处理数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据

    来自:帮助中心

    查看更多 →

  • 准备代码

    # 模型名称 |── data # 预处理数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据

    来自:帮助中心

    查看更多 →

  • 预训练任务

    训练任务 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了