AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai模型训练对机器要求高吗 更多内容
  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • eagle 投机小模型训练

    eagle 投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    MODEL语句用于训练机器学习模型并保存模型。 注意事项 模型名称具有唯一性约束,注意命名格式。 AI训练时长波动较大,在部分情况下训练运行时间较长,设置的GUC参数statement_timeout时长过短会导致训练中断。建议statement_timeout设置为0,语句执行时长不做限制。

    来自:帮助中心

    查看更多 →

  • 计费说明

    000.00 每套 AI算法原型开发-专业版 业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。复杂场景工作量预计不超过25人天 900,000.00 每套 AI算法原型开发-铂金版 业务场景为极特殊的

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 准备环境

    准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。

    来自:帮助中心

    查看更多 →

  • 准备环境

    准备环境 本文档中的模型运行环境是ModelArts Lite的DevServer。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表1。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。

    来自:帮助中心

    查看更多 →

  • 准备环境

    准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。

    来自:帮助中心

    查看更多 →

  • GS

    name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 指令监督微调训练任务

    per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配 num_train_epochs 5 表示训练轮次,根据实际需要修改

    来自:帮助中心

    查看更多 →

  • 离线训练安装包准备说明

    |——AscendCloud-LLM |──llm_train # 模型训练代码包 |──AscendSpeed # 基于AscendSpeed的训练代码 |──ascendcloud_patch/

    来自:帮助中心

    查看更多 →

  • 科学计算大模型训练流程与选择建议

    中期天气要素预测模型选择建议: 科学计算大模型的中期天气要素预测模型,可以对未来一段时间的天气进行预测,具备以下优势: 时间精度:中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况。时间精度对于农业、交通、能源等领域的决策和规划非常重要。 全球覆盖:中期天气要素预测模型能够在全球范围内进行

    来自:帮助中心

    查看更多 →

  • SDXL基于DevServer适配PyTorch NPU的LoRA训练指导(6.3.905)

    /home/ma-user/sdxl-train/user-job-dir/code sh diffusers_lora_train.sh 训练执行成功如下图所示。 图1 训练执行成功 父主题: AIGC模型训练推理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了