AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    训练ai模型 更多内容
  • 训练模型时引用依赖包,如何创建训练作业?

    训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install

    来自:帮助中心

    查看更多 →

  • 创建模型训练服务项目

    创建模型训练服务项目 创建项目用于创建项目空间,并创建JupyterLab环境容器。 在模型训练服务首页,单击“KPI异常检测”模板中的“使用模板创建”,如图1所示。 图1 创建项目 按照界面提示,配置“创建项目”对话框参数。 单击“创建”,完成模型训练服务项目的创建。 在模型训练服务首页,项目新增完成,如图2所示。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    “微调”。模型选择完成后,参考表1完成训练参数设置。 表1 NLP大模型微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古大模型模型类型 选择“NLP大模型”。 训练类型 选择“微调”。 训练目标 全量微调:在模型有监督微调过程中,对大模型的全部参数进

    来自:帮助中心

    查看更多 →

  • 管理NLP大模型训练任务

    管理NLP大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:

    来自:帮助中心

    查看更多 →

  • 发布训练后的NLP大模型

    发布训练后的NLP大模型 NLP大模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码

    来自:帮助中心

    查看更多 →

  • 工业感知AI模型库

    工业感知AI模型库 工业AI感知库的建设目标是利用3C电子检测设备的运行所累积的资料,建立人工智能智能模型库,利用人工智能模型训练,不断地进行迭代,最后将其应用到3C的电子测试中,以提高整个3C相关产品的测试性能。 工业AI感知库采用了标准的体系结构,实现了多模式的串行整合,并实现了云计算的迅速发行。

    来自:帮助中心

    查看更多 →

  • 发布模型到AI Gallery

    发布模型AI Gallery 除了Gallery提供的已有资产外,还可以将个人创建的资产发布至Gallery货架上,供其他AI开发者使用,实现资产共享。 模型资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在左侧“我的资产 > 模型”下,选择未发布的模型,单击模型名称,进入模型详情页。

    来自:帮助中心

    查看更多 →

  • 从AI Gallery订阅模型

    服务订阅模型管理在“模型管理>云服务订阅模型”页面中。 模型来源不同。订阅模型模型来源于AI Gallery;云服务订阅模型模型来源于其他AI服务开发的模型。 订阅模型列表 在ModelArts的“模型管理>订阅模型”页面中,罗列了从AI Gallery订阅的所有模型。 订阅模型,可通过如下操作获得:

    来自:帮助中心

    查看更多 →

  • 从训练作业中导入模型文件创建模型

    训练作业中导入模型文件创建模型 在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。

    来自:帮助中心

    查看更多 →

  • 托管模型到AI Gallery

    托管模型AI Gallery AI Gallery上每个资产的文件都会存储在线上的AI Gallery存储库(简称AI Gallery仓库)里面。每一个模型实例视作一个资产仓库,模型实例与资产仓库之间是一一对应的关系。例如,模型名称为“Test”,则AI Gallery仓库有个

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 模型训练高可靠性

    模型训练高可靠性 训练作业容错检查 训练日志失败分析 训练作业卡死检测 训练作业重调度 设置断点续训练 设置无条件自动重启 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

  • 训练图像分类模型

    ,然后等待工作流按顺序进入训练节点即可。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“图像分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成了模型的自动训练训练完成后,您可以单击“图像分类

    来自:帮助中心

    查看更多 →

  • 如何在模型训练时,设置日志级别?

    如何在模型训练时,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:

    来自:帮助中心

    查看更多 →

  • ModelArts训练好后的模型如何获取?

    ModelArts训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    执行纵向联邦模型训练作业 功能介绍 执行纵向联邦模型训练作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/execute 表1 路径参数 参数 是否必选

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    ”。 基础模型 可以选择“预置模型”和“我的模型”,模型会自带时间分辨率,会根据预设的时间间隔处理和生成预测结果。 若训练类型为“预训练”,训练任务使用训练数据重新训练出与基础模型分辨率相同的模型。 若训练类型为“微调”,训练任务会使用训练数据在基础模型的基础上进行训练。 plog日志

    来自:帮助中心

    查看更多 →

  • 制作自定义镜像用于训练模型

    制作 自定义镜像 用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)

    来自:帮助中心

    查看更多 →

  • 发布和管理AI Gallery模型

    发布和管理AI Gallery模型 构建模型 托管模型AI Gallery 发布模型AI Gallery 管理AI Gallery模型 父主题: AI Gallery(新版)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了