自助服务

华为云自助服务为用户提供产品常见问题,自助工具,便捷服务入口,帮助您更加方便、快捷的使用云服务

    深度学习训练工具 更多内容
  • 附录:微调训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspee

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建训练工程、联邦学习工程、训练服务或超参优化服务。 名称 模型训练名称。 模型训练工程描述 对模型训练工程的描述信息。 创建时间 训练工程、联邦学习工程、训练服务或者超参优化服务的创建时间。 类型 模型训练的类型。 包含如下选项: 模型训练 联邦学习 训练服务 优化服务 创建者 创建训练工程、联邦

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    支持企业用户的机器学习深度学习完整使用过程。 如下图所示: 通过Kubeflow 1.0,用户可以使用Jupyter开发模型,然后使用fairing(SDK)等工具构建容器,并创建Kubernetes资源训练其模型。模型训练完成后,用户还可以使用KFServing创建和部署用于

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    重新训练 对第一次训练无影响,仅影响任务重跑。 “是”:清空上一轮的模型结果后重新开始训练。 “否”:导入上一轮的训练结果继续训练。适用于欠拟合的情况。 批量大小 一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。

    来自:帮助中心

    查看更多 →

  • 工具

    华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。

    来自:帮助中心

    查看更多 →

  • 工具

    工具 SQL诊断 SQL探针 表诊断 父主题: 在监控面板(DMS)查看 GaussDB (DWS)集群监控

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因其

    来自:帮助中心

    查看更多 →

  • 方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    型会自带时间分辨率,会根据预设的时间间隔处理和生成预测结果。 若训练类型为“预训练”,训练任务使用训练数据重新训练出与基础模型分辨率相同的模型。 若训练类型为“微调”,训练任务会使用训练数据在基础模型的基础上进行训练。 plog日志 plog日志。plog日志是一种用来记录模型运

    来自:帮助中心

    查看更多 →

  • 产品优势

    集成50+电信领域AI算子&项目模板提升训练效率,降低AI开发门槛,让开发者快速完成模型开发和训练 AutoML自动完成特征选择、超参选择及算法选择,提升模型开发效率 高效开发工具JupyterLab和WebIDE:交互式编码体验、0编码数据探索及云端编码及调试 联邦学习&重训练,保障模型应用效果

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    ,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    集成50+电信领域AI算子&项目模板提升训练效率,降低AI开发门槛,让开发者快速完成模型开发和训练 AutoML自动完成特征选择、超参选择及算法选择,提升模型开发效率 高效开发工具JupyterLab和WebIDE:交互式编码体验、0编码数据探索及云端编码及调试 联邦学习&重训练,保障模型应用效果

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了