AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习潮汐预测 更多内容
  • 发起联邦预测

    中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题: 使用 TICS 联邦预测进行新数据离线预测

    来自:帮助中心

    查看更多 →

  • 分子属性预测

    分子属性预测 基于盘古药物分子大模型,预测化合物ADMET相关的80多种成药属性,有些属性的预测值会给出置信区间,更好地辅助分子设计。 单击“分子属性预测”功能卡片,进入配置页面。 图1 小分子配置页面 在配置页面输入分子信息,及配置相关参数。 输入方式:支持绘制分子、选择文件、手动输入。

    来自:帮助中心

    查看更多 →

  • 在线服务预测时,如何提高预测速度?

    在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 创建预测分析自动学习项目时,对训练数据有什么要求?

    创建预测分析自动学习项目时,对训练数据有什么要求? 数据集要求 文件规范:名称由以字母数字及中划线下划线组成,以'.csv'结尾,且文件不能直接放在OBS桶的根目录下,应该存放在OBS桶的文件夹内。如:“/obs-xxx/data/input.csv”。 文件内容:文件保存为“c

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 预测性维护功能

    预测性维护功能 设备概览操作 登录数字孪生管理控制台。 单击左半侧目录“设备概览统计”。 图1 设备概览统计 预测设备台账操作 登录数字孪生管理控制台。 单击左半侧目录“预测设备台账”。 单击页面右侧页面内容左上方“添加”,进入“添加预测设备台账”页面。 图2 添加预测设备台账1

    来自:帮助中心

    查看更多 →

  • 查看预测外呼

    查看预测外呼 前提条件 管理员已为指定座席人员建立预测外呼任务,并启动任务。 座席处于空闲态,预测外呼配有外呼数据且已经启动。 操作步骤 外呼业务代表进入云联络中心,输入账号、密码登录。 选择“外呼任务 > 座席外呼任务”。 图1 外呼任务 点击外呼结果,可查看外呼结果。 表1 预测外呼结果提示元素说明

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 云原生混部概述

    的数据,分析其规律,获得其运行态势,如:业务分级(天/周/月)的潮汐规律性、CPU敏感型、L3缓存敏感型、内存敏感型等。 最后,通过Volcano丰富多样的、按需启用的调度策略,将应用调度到合适的环境中。如:基于预测的智能调度策略、基于业务的binpack装箱/重调度策略、基于运行态势的资源超卖策略等。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    ,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用TI CS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    在线服务 步骤7:在线预测 在“部署上线 > 在线服务”管理页面,单击在线服务名称,进入在线服务详情页面。 在线服务详情页面中,切换到 “预测“ 页签,单击“上传”,从本地上传待预测数据,格式参考算法说明。 本地上传数据完成后,单击“预测”,开始预测。 图9 预测结果 步骤8:清除资源

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了