AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习中防止过拟合的方法 更多内容
  • 排序策略-离线排序模型

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    神经网络中:学习率、学习衰减率、隐藏层数、隐藏层单元数、Adam优化算法β1和β2参数、batch_size数值等。 其他算法:随机森林树数量,k-meanscluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    直接从数据本身派生。 有监督学习 有监督学习机器学习任务一种。它从有标记训练数据推导出预测函数。有标记训练数据是指每个训练实例都包括输入和期望输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型微调过程,只对模型一部分参数进行更新,而不是对所

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    数据量级:如果微调数据很多,从客观上来说越多数据越能接近真实分布,那么可以使用较大学习率和较大批量大小,以提高训练效率。如果微调数据量相对较少,则可以使用较小学习率和较小数据批量大小,避免拟合。 通用模型规格:如果模型参数规模较小,那么可能需要较大学习率和较大批量大小,以提高训练效率

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    用于定义路径删除机制删除概率。路径删除是一种正则化技术,它在训练过程随机删除一部分网络连接,以防止模型拟合。这个值越大,删除路径越多,模型正则化效果越强,但同时也可能会降低模型拟合能力。取值范围:[0,1)。 特征删除概率 用于定义特征删除机制删除概率。特征删除

    来自:帮助中心

    查看更多 →

  • 职业认证考试的学习方法

    职业认证考试学习方法 华为云职业认证 提供在线学习/导师面授+在线测试+真实环境实践,理论与实践结合学习模式,帮助您轻松通过认证。 您可以通过如下途径进行职业认证学习: 进入华为云开发者学堂职业认证,按照页面指引在线学习认证课程。 在HALP处报名认证培训课程,由专业导师进行面授培训。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型总是重复相同的回答

    “核采样”等参数设置,适当增大其中一个参数值,可以提升模型回答多样性。 数据质量:请检查训练数据是否存在文本重复异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置不合理而导致拟合,该现象会更加明显。请检查训练参数 “训练轮次”或

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了拟合。请检查训练参数 “训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 数据质量:请检查训练数据质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 定位类中的方法

    定位类方法 一个搜索查询class:vet AND method:test匹配所有名称带有test方法,并且属于名称带有vet类。 一个搜索查询class:test AND (method:upd OR method:del)匹配所有名称带有upd或del方法,并且属于名称中带有test的类。

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    这种情况可能是由于以下原因导致,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了欠拟合拟合。请检查训练参数 “训练轮次”或“学习率”等参数设置,根据实际情况调整训练参数,帮助模型更好学习。 Pro

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型的回答中会出现乱码

    训练参数设置:若数据质量存在问题,且因训练参数设置不合理而导致拟合,该现象会更加明显。请检查训练参数 “训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 推理参数设置:请检查推理参数“温度”或“核采样”等参数设置,适当减小其中一个参数值,可以提升模型回答的确定性,避免生成异常内容。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域感知因子分解机是因子分解机改进版本,因子分解机每个特征对其他域隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高精度,但也更容易出现拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达学习,同时学习

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的盘古大模型是否正常

    如何评估微调后盘古大模型是否正常 评估模型效果方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线变化趋势来评估训练效果,确认训练过程是否出现了拟合或欠拟合等异常情况。 模型评估:使用平台“模型评估”功能,“模型评估”将对您之前上传测试集进

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来最低值。 热身比例 热身比例是指在模型训练过程逐渐增加学习过程。在训练初始阶段,模型权重通常是随机初始化,此时模型预测能力较弱。如果直接使用较大学习率进行训练,

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景合规实践 该示例模板对应合规规则说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护版本 cce CC

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    步骤: 选择合适模型:根据任务目标选择适当模型。 模型训练:使用处理后数据集训练模型。 超参数调优:选择合适学习率、批次大小等超参数,确保模型在训练过程能够快速收敛并取得良好性能。 开发阶段关键是平衡模型复杂度和计算资源,避免拟合,同时保证模型能够在实际应用中提供准确的预测结果。

    来自:帮助中心

    查看更多 →

  • DELETE方法的代理

    DELETE方法代理 功能介绍 北向NA调用南向第三方应用DELETE方法时使用 调试 您可以在 API Explorer 调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v2/{proj

    来自:帮助中心

    查看更多 →

  • GET方法的代理

    GET方法代理 功能介绍 北向NA调用南向第三方应用GET方法时使用 调试 您可以在API Explorer调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/e

    来自:帮助中心

    查看更多 →

  • PATCH方法的代理

    PATCH方法代理 功能介绍 北向NA调用南向第三方应用PATCH方法时使用 调试 您可以在API Explorer调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PATCH /v2/{project

    来自:帮助中心

    查看更多 →

  • POST方法的代理

    POST方法代理 功能介绍 北向NA调用南向第三方应用POST方法时使用 调试 您可以在API Explorer调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了