AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习之线性回归 更多内容
  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    型中,自回归过程负责量化当前数据与前期数据之间的关系,移动平均过程负责解决随机变动项的求解问题,因此,该模型比AR/MA更为有效和常用。 ARIMA适用于非平稳序列 (non-stationary)。ARIMA(p, q, d)中p为自回归项数,q为滑动平均项数,d为使成为平稳序列所做的差分次数(阶数)。

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    型中,自回归过程负责量化当前数据与前期数据之间的关系,移动平均过程负责解决随机变动项的求解问题,因此,该模型比AR/MA更为有效和常用。 ARIMA适用于非平稳序列 (non-stationary)。ARIMA(p, q, d)中p为自回归项数,q为滑动平均项数,d为使成为平稳序列所做的差分次数(阶数)。

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 排序策略

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三

    来自:帮助中心

    查看更多 →

  • 开发指南

    例如计划生产的产品收益等。 已知参数:解决问题过程中的已知参数,例如生产原料,具备不同技能的生产工人、各种生产机器等。 约束条件:解决问题过程中的约束条件,例如每台机器不能连续生产20小时,每个工人不能连续工作16小时等。 优化目标:待解决的问题目标,例如最大化生产利润、最低运营成本等。

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 数学优化求解器

    例如计划生产的产品收益等。 已知参数:解决问题过程中的已知参数,例如生产原料,具备不同技能的生产工人、各种生产机器等。 约束条件:解决问题过程中的约束条件,例如每台机器不能连续生产20小时,每个工人不能连续工作16小时等。 优化目标:待解决的问题目标,例如最大化生产利润、最低运营成本等。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • 异常检测

    算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。 history 示例 对于数据流MyTable

    来自:帮助中心

    查看更多 →

  • 异常检测

    算法使用的随机种子值。 4010 numClusters 否 分类数,默认包含异常和非异常两类。 2 dataViewMode 否 算法学习模式。 history:学习所有历史数据。 horizon:仅考虑最近一段时间历史数据,默认为4个窗口。 history 示例 对于数据流MyTable

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了