华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习阅读提取 更多内容
  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 重新学习服务器

    重新学习服务器 如果已完成进程白名单扩展,但仍然存在较多可信进程运行误报或您的服务器业务存在变更,您可以设置HSS重新学习服务器,校准HSS的应用进程情报数据,避免误报。 重新学习服务器 登录管理控制台。 在页面左上角选择“区域”,单击,选择“安全与合规 > 企业主机安全”,进入主机安全平台界面。

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    关联。 单击流程后的“呼叫测试”,输入“你好”,机器人回答“你好”。 您的“对话类型”选择“聊天机器人”,需要进行渠道配置。 选择“配置中心 > 接入配置>渠道配置”。 单击“新增”,在机器人配置中,开启机器人,可选择已发布的机器人。 当您的“对话类型”选择“语音导航”或“IVR流程”时,需要配置被叫路由。

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    什么是OptVerse 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 概述

    概述 以和ODFS集成的智能语音导航支持如下三类机器人的配置为例,介绍三种不同的知识配置方式: 机器人类型 用途 针对行业 样例 问答型对话机器人 系统根据用户的具体问题给出具体答案。 回答的内容更基于知识而不是用户目的。 针对垂直领域,技术上强调直接与知识库结合的回复获取方面的技术。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    功能介绍 自然语言处理 包含如下子服务 自然语言处理基础 (Natural Language Processing Fundamentals),为用户提供包括分词、命名实体识别、关键词提取、短文本相似度等自然语言相关的API,可用于智能问答、对话机器人、内容推荐、电商评价分析等场景中。

    来自:帮助中心

    查看更多 →

  • 什么是应用性能管理服务

    理)的应用运维指标进行综合判断。 找到应用性能瓶颈后,可以通过CodeArts PerfTest(性能测试 )关联分析生成性能报表。 通过智能算法学习历史指标数据,APM多维度关联分析异常指标,提取业务正常与异常时上下文数据特征,通过聚类分析找到问题根因。 产品优势 非侵入式性能

    来自:帮助中心

    查看更多 →

  • 智能文档解析

    智能文档解析 功能介绍 智能文档解析基于领先的深度学习技术,对含有结构化信息的文档图像进行键值对提取 表格识别 与版面分析并返回相关信息。不限制版式情况,可支持多种证件、票据和规范行业文档,适用于各类行业场景。 应用场景 金融:银行回单、转账存单、理财信息截图等。 政务:身份证、结婚证、居住证、各类企业资质证照。

    来自:帮助中心

    查看更多 →

  • 提取图片中的图片暗水印

    ShowImageWatermarkWithImageRequest request = new ShowImageWatermarkWithImageRequest(); ShowImageWatermarkWithImageRequestBody bodybody

    来自:帮助中心

    查看更多 →

  • 设置CodeArts TestPlan接口脚本的响应提取

    TestPlan接口脚本的响应提取 响应提取提取接口响应结果的某一部分,命名为参数,供后续测试步骤参数化调用。响应提取需要在前序测试步骤定义,后续测试步骤使用。 在前序测试步骤中,在“响应提取”页签创建要传递的参数。响应提取的来源需要用到内置参数,请参考内置参数了解如何使用内置参数。响应提取同时支持

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    概述 FPGA加速云服务器(FPGA Accelerated Cloud Server,FA CS )提供FPGA开发和使用的工具及环境,让用户方便地开发FPGA加速器和部署基于FPGA加速的业务,为您提供易用、经济、敏捷和安全的FPGA云服务。 FPGA加速云服务器包括两类: 高性能架构

    来自:帮助中心

    查看更多 →

  • 钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端?

    钉钉机器人、钉钉企业内部机器人、飞书机器人、企业微信机器人如何获取订阅终端? 钉钉机器人、钉钉企业内部机器人、飞书机器人和企业微信机器人在添加订阅时,输入的订阅终端地址获取方式如下。 钉钉机器人 在钉钉的群设置中选择“智能群助手”,添加机器人时选择“自定义”,创建完成后即可获得w

    来自:帮助中心

    查看更多 →

  • 购买使用工具

    版本类型 当前支持“Server版”和“单机版”。 WeAutomate管理中心 不可选选项,默认数量为1,详情请见购买使用工具。 WeAutomate设计器 需要购买WeAutomate设计器的数量。 有人值守机器人 当版本类型选择“Service版”时,选择有人值守机器人数量。 无人值守机器人

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 安装机器人环境

    ad?type=trialactivation 输入ESN码,产品选择机器人助手,点击获取License按钮 图12 获取License按钮 点击导入下载的许可证 图13 导入下载的许可证 父主题: 网银机器人部署

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    关联。 单击流程后的“呼叫测试”,输入“你好”,机器人回答“你好”。 您的“对话类型”选择“聊天机器人”,需要进行渠道配置。 选择“配置中心 > 接入配置>渠道配置”。 单击“新增”,在机器人配置中,开启机器人,可选择已发布的机器人。 当您的“对话类型”选择“语音导航”或“IVR

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了