基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    机器学习训练推理 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。Dee

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 自定义镜像规范

    Gallery。 在AI Gallery进行 自定义镜像 训练推理。使用AI Gallery微调大师训练模型或使用AI Gallery在线推理服务部署模型。 如果使用自定义镜像进行训练,操作步骤可以参考使用AI Gallery微调大师训练模型,其中“训练任务类型”默认选择“自定义”,且不支持修改。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • 推理服务

    推理服务 推理服务 任务队列 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 推理服务

    推理服务 新建推理服务 在左侧菜单栏中单击“训练服务 > 推理服务”。 选择“推理服务”页签,单击“新建推理服务”,填写基本信息。 图1 新建推理服务 名称:输入推理服务名称,只能包含数字、英文、中文、下划线、中划线,不得超过64个字符。 描述:简要描述任务信息。不得包含“@^\

    来自:帮助中心

    查看更多 →

  • 如果不再使用ModelArts,如何停止收费?

    是否有“运行中”的Workflow列表。如果有,单击Workflow列表中“操作 > 删除”即可停止计费。 进入“ModelArts>自动学习”页面,检查是否有“运行中”的项目。如果有,单击项目列表中“操作 > 删除”即可停止计费。 进入“ModelArts>开发空间>Noteb

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907)

    Step1 检查环境 请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买DevServer资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户,或者多个用户共享使

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 编辑代码(简易编辑器)

    支持使用简易编辑器编辑代码。可选择下述一种方式,进入简易编辑器开发环境编辑代码: 在“模型训练”菜单页面,“开发环境”为“简易编辑器”的情况下,单击联邦学习工程所在行的。 在“模型训练”菜单页面,单击联邦学习工程所在行,进入详情界面。“开发环境”为“简易编辑器”的情况下,单击详情界面右上角的图标。

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery在线推理服务部署模型

    。 表2 推理效果的指标介绍 指标名称 指标说明 CPU使用率 在推理服务启动过程中,机器的CPU占用情况。 内存使用率 在推理服务启动过程中,机器的内存占用情况。 显卡使用率 在推理服务启动过程中,机器的NPU/GPU占用情况。 显存使用率 在推理服务启动过程中,机器的显存占用情况。

    来自:帮助中心

    查看更多 →

  • 使用训练模型进行在线推理的推理入口函数在哪里编辑?

    使用训练模型进行在线推理推理入口函数在哪里编辑? 进入简易编辑器界面,在“代码目录”节点下,创建推理文件,根据实际情况写作推理代码。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 昇腾能力应用地图

    WEBUI套件适配PyTorch NPU的推理指导 Open-Sora-Plan 训练 推理 PyTorch Open-Sora-Plan1.0基于DevServer适配PyTorch NPU训练推理指导(6.3.907) Qwen-VL 训练 推理 PyTorch Qwen-VL基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    将权重文件上传到DevServer机器中。权重文件的格式要求为Huggingface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,需要上传训练后的权重文件和开源的原始权重文件。模型训练训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step4

    来自:帮助中心

    查看更多 →

  • 方案概述

    开发环境复杂:AI开发面临算子层、模型层、应用使能层等多技术体系的熟悉,学习难;AI现场开发过程中常会遇到难点问题、新特性理解不深入,问题求助响应慢;模型运行依赖多,开发环境搭建复杂;工具链种类多,学习周期长。 专业人才短缺:客户虽然有专业的AI算法工程师团队,但不了解CANN

    来自:帮助中心

    查看更多 →

  • 如果不再使用ModelArts,如何停止收费?

    是否有“运行中”的Workflow列表。如果有,单击Workflow列表中“操作 > 删除”即可停止计费。 进入“ModelArts>自动学习”页面,检查是否有“运行中”的项目。如果有,单击项目列表中“操作 > 删除”即可停止计费。 进入“ModelArts>开发空间>Noteb

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自定义算法实现手写数字识别

    Step1 准备训练数据:下载MNIST数据集。 Step2 准备训练文件和推理文件:编写训练推理代码。 Step3 创建OBS桶并上传文件:创建OBS桶和文件夹,并将数据集和训练脚本,推理脚本,推理配置文件上传到OBS中。 Step4 创建训练作业:进行模型训练。 Step5

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了