AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型输出 更多内容
  • 模型输出目录规范

    模型输出目录规范 模型导入(转换)任务执行完成后,华为HiLens将转换后的模型输出至指定的OBS路径。针对不同的转换任务,基于Ascend芯片,其模型输出目录需要满足一定的规范要求。华为HiLens当前对模型输出目录的要求如下: 针对基于Caffe框架的模型,执行模型导入(转换)时,其输出目录说明如下所示。

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 三维模型产品输出

    三维模型产品输出 三维模型即场景模型,常见格式为 obj,osgb。实景三维操作台可设置输出格式、纹理来源、纹理质量、纹理最大尺寸、是否应用调色风格等。 操作步骤 在实景三维操作台中,重建设置成功后,单击“提交产品”。 图1 提交产品 进入提交产品页面,进行产品输出设置。具体输出设置请参见表1。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 删除格式转换后输出的模型

    页面。 选择需要删除模型文件的模型,单击“格式转换”。 图1 格式转换 在展开的“格式转换”页面,找到需要删除的模型文件,单击“删除”。 转换中的模型文件不能删除。 图2 删除已转换格式的模型文件 在弹出的提示框中,单击“确认”。 父主题: 使用iDEE对模型进行格式转换

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • 下载格式转换后输出的模型

    下载格式转换后输出模型 您可以通过iDEE业务面的工作台,对模型中已转换格式的模型文件进行下载操作。 前提条件 已获取具有相应角色权限的账号和密码。 已完成格式转换,具体操作请参见转换iDEE业务面已有模型格式。 下载模型文件 登录iDEE控制台。 在“几何数据转换服务”所在行,单

    来自:帮助中心

    查看更多 →

  • 修订记录

    变换、优化模型训练、特征迁移增加迁移评估等,对应刷新JupyterLab开发平台。 模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档的模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务的模型包更新发布推理服务,对应刷新模型管理。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 表输出

    输出 概述 “表输出”算子,用于配置输出的字段对应到关系型数据库的指定列。 输入与输出 输入:需要输出的字段 输出:关系型数据库表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 输出分隔符 配置分隔符。 说明: 该配置仅用于MySQL专用连接器,当数据列内容

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、数据工程、模型构建、部署落地

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接

    来自:帮助中心

    查看更多 →

  • 输出变量

    输出变量 输出变量可以理解为模块的返回值,通过关键字 "output" 进行声明。输出变量是一种对外公开某些信息的方法,既可以在根模块中运行 terraform apply/output 命令输出特定的值,又可以在子模块中将资源的属性值提供给父模块。 声明输出变量 按照约定,输出变量通常在名为

    来自:帮助中心

    查看更多 →

  • 示例-输出

    示例-输出 本示例展示了多种输出端的接口调用,在使用前请确保各种输出端已连接并可用,若您的某种输出端条件不具备,请将示例代码当中相应的代码注释掉或者删除,再运行示例代码。输出模块示例如下所示: #! /usr/bin/python3.7 import hilens import cv2

    来自:帮助中心

    查看更多 →

  • Hive输出

    Hive输出 概述 “Hive输出”算子,用于配置已生成的字段输出到Hive表的列。 输入与输出 输入:需要输出的字段 输出:Hive表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Hive文件存储格式 配置Hive表文件的存储格式(目前支持四种格式: CS V、ORC、RC和PARQUET)。

    来自:帮助中心

    查看更多 →

  • Spark输出

    Spark输出 概述 “Spark输出”算子,用于配置已生成的字段输出到SparkSQL表的列。 输入与输出 输入:需要输出的字段 输出:SparkSQL表 参数说明 表1 算子参数说明 参数 含义 类型 是否必填 默认值 Spark文件存储格式 配置SparkSQL表文件的存储

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了