AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型分类器 更多内容
  • 训练分类器

    分类的模型训练。 在“应用开发>训练分类器”页面,单击“添加已有模板”。 弹出添加已有模板对话框。 勾选模板,确认模板信息后,单击“确定”。 “应用开发>训练分类器”页面会显示新添加的模板。 训练分类器 单击“开始训练”。服务进入“应用开发>评估”页面,开始训练模型模型训练完成

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 什么是Ray

    还引入了动态任务图的概念,这使得它可以处理需要灵活调度的工作负载,例如强化学习、超参数调整和其他迭代式算法。 通过提供对分布式计算的支持,Ray促进了更快的模型训练和更有效的资源使用,对于那些希望在多台机器上扩展其应用的研究人员和工程师来说,是一个强有力的工具。同时,Ray生态系统还包括一些高级库,例如Ray

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    确以哪几种板式图片作为模板训练 文字识别 模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。 已在文字识别套件控制台选

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    ,通过多模板训练模板分类模型和文字识别模型,实现多模板图像的文字信息结构化提取。 图1 创建多模板流程 表1 创建多模板流程说明 流程 说明 详细指导 上传模板图片 在使用多模板工作流开发应用之前,需要上传模板图片,明确以哪些图片作为模板训练文字识别模型。 上传模板图片 定义预处理

    来自:帮助中心

    查看更多 →

  • 评估应用

    在“应用资产”页面,默认进入“分类器列表”页签,单击已有模板操作列的“评估”。进入“评估”页面。 图1 评估应用 在“应用开发”页面,依次完成“上传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“训练分类器”步骤,单击“下一步”,进入“评估”页面。 图2 评估应用 评估分类器 通过上传

    来自:帮助中心

    查看更多 →

  • 使用多模板工作流开发应用

    服务进入“应用开发>评估”页面,开始训练模型模型训练完成后,可在“应用开发>评估”页面评估分类器和模板,详情请见步骤8:评估模板。 步骤8:评估模板 在“应用开发>评估”页面包含分类器评估和模板评估 ,其中分类器评估用于识别模板类型,模板评估用于识别对应模板中的文字。 分类器评估 默认进入“本地

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件 已在自定义OCR控制台选择“多模板分类工作流”创建应用,详情请见创建应用。 提前准备模板图片以及训练分类器的数据集,其要求请见数据要求。

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接口,目前只实现了rlstm,方便后续扩展。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的函数接

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 计费说明

    基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了