华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习拐点曲线 更多内容
  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    概述 FPGA加速云服务器(FPGA Accelerated Cloud Server,FA CS )提供FPGA开发和使用的工具及环境,让用户方便地开发FPGA加速器和部署基于FPGA加速的业务,为您提供易用、经济、敏捷和安全的FPGA云服务。 FPGA加速云服务器包括两类: 高性能架构

    来自:帮助中心

    查看更多 →

  • GS

    AiEngine端所部署的host ip地址。 port integer AiEngine端所侦听的端口号。 max_epoch integer 模型每次训练的迭代次数上限。 learning_rate real 模型训练的学习速率,推荐缺省值1。 dim_red real 模型特征维度降维系数。

    来自:帮助中心

    查看更多 →

  • 通过调整模型参数对异常告警调优

    突变告警可以防止阈值线学习宽松条件下指标突变的漏告警,但对于不关注阈值线之上数据突变的指标会产生一些不必要的告警。 波动性告警 波动性告警只针对非请求量类指标,这类告警的特点是指标曲线没有触及阈值线,如图4所示。 图4 波动性告警 告警进入条件:局部看曲线波动变大,或者长期看相比历史数据持续降低或升高。

    来自:帮助中心

    查看更多 →

  • 统计分析

    和变化曲线,鼠标停在曲线中可以查看该时间点的具体数据。 单击【对比】,选择同样长度的时间区间可以对比两个时间区间的数据和变化曲线; 选择【区间统计】可以查看该区间内的总量; 单击【导出】可以下载导出相应数据和曲线。 拖拽图形下方的时间轴可以聚焦到某一具体时间段,查看变化曲线。 图3

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    关联。 单击流程后的“呼叫测试”,输入“你好”,机器人回答“你好”。 您的“对话类型”选择“聊天机器人”,需要进行渠道配置。 选择“配置中心 > 接入配置>渠道配置”。 单击“新增”,在机器人配置中,开启机器人,可选择已发布的机器人。 当您的“对话类型”选择“语音导航”或“IVR流程”时,需要配置被叫路由。

    来自:帮助中心

    查看更多 →

  • 环境监控

    环境监控 监测点温湿度曲线 单击监测点列表右上角【冷气供应中】,列表只显示开启中的监测点,隐藏关闭、离线的监测点; 单击曲线上方【温度】或【湿度】,可以切换查看当前监测点的送回风温度或湿度变化曲线;【选择时间】可设定曲线区间;鼠标停在曲线中可以查看该时间点的具体数据;拖拽图形下方

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 设备工况

    的所有运行参数。 选择设备,单击【查看数据】,可以查看该参数的历史运行数据和曲线。可设定查询时间区间,鼠标停在曲线中可以查看该时间点的具体数据;拖拽图形下方的时间轴可以聚焦到某一具体时间段,查看变化曲线。 图1 机组参数 图2 查看数据 父主题: 监控中心

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    什么是OptVerse 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 使用要求 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 如何在DLI中运行复杂PySpark程序?

    k的融合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于 DLI 这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DLI服务在其计算资源中已经内置了一些常用的机器学习的算法库(具体可以参考” 数据湖探索

    来自:帮助中心

    查看更多 →

  • 边缘数据中心管理 EDCM

    据需要执行以下步骤。 表1 设置曲线图展示参数 操作名称 说明 操作步骤 显示或隐藏曲线图 系统默认设置为显示所有曲线图。用户可根据实际需要设置显示或隐藏“”“资源统计/资源出租趋势分析”、“变压器电力分析”或“UPS电力分析”曲线图。 显示曲线图:使“资源统计/资源出租趋势分析

    来自:帮助中心

    查看更多 →

  • 能耗分析

    上角设备类型,可隐藏某一设备类型曲线;鼠标停在曲线中可以查看该时间点的具体电量、电费。拖拽图形下方的时间轴可以聚焦到某一具体时间段,查看变化曲线;鼠标停留在饼状图设备类型上,可显示当前设备类型的总电量、总电费,同时右侧折线图只显示当前设备类型的曲线。 图1 能耗分析-1 图2 能耗分析-2

    来自:帮助中心

    查看更多 →

  • 修订记录

    2020-07-30 AOM2.0版本上线。 Console 切换UI4.0。 2019-11-30 支持云服务监控功能:展示华为云各服务实例的历史性能数据曲线,了解云服务实例运行状况。 2019-11-13 日志采集规则修改:指定日志采集文件名时不受日志文件扩展名(.log、.trace和

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 对话机器人服务

    01 了解 了解华为对话机器服务的产品介绍、应用场景、使用限制,有助于更好的使用对话机器服务。 产品介绍 什么是对话机器人 适用场景 使用限制 基本概念 03 入门 对话机器人提供以下场景,帮助用户更快的创建对应的机器人。 快速入门 如何快速创建一个问答机器人 如何使用Postman调用CBS服务

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了