AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习的sklean 更多内容
  • 天筹求解器服务简介

    天筹求解器服务简介 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力行业解决方案。 父主题: 服务介绍

    来自:帮助中心

    查看更多 →

  • 如何删除机器人

    如何删除机器人 试用版本机器人 对于试用版本智能问答机器人,可以通过“删除”操作将机器人删除,删除后不支持恢复。 图1 删除试用机器人 包周期版本机器人 对于包周期计费智能问答机器人,可执行“退订”操作。 登录对话机器服务管理控制台。 在控制台中选择“费用与成本”。 进入费

    来自:帮助中心

    查看更多 →

  • 重新学习服务器

    重新学习服务器 如果已完成进程白名单扩展,但仍然存在较多可信进程运行误报或您服务器业务存在变更,您可以设置HSS重新学习服务器,校准HSS应用进程情报数据,避免误报。 重新学习服务器 登录管理控制台。 在页面左上角选择“区域”,单击,选择“安全与合规 > 企业主机安全”,进入主机安全平台界面。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    model_name name 模型实例名,每个模型对应AiEngine在线学习进程中一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务database名,每个模型只针对单个database。此参数决定训练时所使用数据。 ip name AiEngine端所部署的host

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    什么是OptVerse 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台智能决策服务,以自研AI求解器为核心引擎,结合机器学习与深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力行业解决方案。 使用要求 OptVerse以开放API(Application

    来自:帮助中心

    查看更多 →

  • 态势感知的数据来源是什么?

    Firewall,WAF)等安全防护服务上报告警数据,从中获取必要安全事件记录,进行大数据挖掘和机器学习,智能AI分析并识别出攻击和入侵,帮助用户了解攻击和入侵过程,并提供相关防护措施建议。 态势感知通过对多方面的安全数据分析,为安全事件处置决策提供依据,实时呈现完整全网攻击态势。 详细说明请参见态势感知工作原理。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力一种科技能力。AI最核心能力就是根据给定输入做出判断或预测。 AI开发目的是什么 AI开发目的是将隐藏在一大批数据背后信息集中处理并进行提炼,从而总结得到研究对象内在规律。 对数据进行分析,一般通过使用适当统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    解决生物计算量性能瓶颈。FPGA云服务器提供强大可编程硬件计算能力可以很好满足海量生物数据快速计算需求。 金融风险分析:金融行业对计算能力、基于超低时延和高吞吐能力及时响应有很高要求,比如基于 定价 树模型金融计算、高频金融交易、基金/证券交易算法、金融风险分析和决策

    来自:帮助中心

    查看更多 →

  • 最新动态

    相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少情况,联合多个参与者共同样本不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常见场景, TICS

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用流水线工具,核心是将完整机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成效率。 ModelArts W

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    新建作业 在弹出界面进行数据选择,选择两方数据集作为整个作业数据集,必须选择一个当前代理数据集,另一个数据集可以来自空间中任意一方。两方数据集中一方数据集只含有特征,另一方数据集必须含有标签。 重试:开关开启后,执行失败作业会根据配置定时进行重试,仅对开启后执行作业生效

    来自:帮助中心

    查看更多 →

  • 和机器人说你好

    同。 单击画布上方“”保存。 单击画布上方“”,在弹出发布页面单击“”。 选择“机器人管理>流程配置>智能机器人”页面,单击“”按钮,将流程接入码与新增流程关联。 单击流程后“呼叫测试”,输入“你好”,机器人回答“你好”。 您“对话类型”选择“聊天机器人”,需要进行渠道配置。

    来自:帮助中心

    查看更多 →

  • 修订记录

    模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务模型包更新发布推理服务,对应刷新模型管理。 2020-04-16 变更点如下: 模型训练服务首页项目列表“

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 如何在DLI中运行复杂PySpark程序?

    park融合机器学习相关大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于 DLI 这样Serverless化服务用户无需也感知不到底层计算资源,那如何来保证用户可以更好运行他程序呢? DLI服务在其计算资源中已经内置了一些常用机器学习的算法库(具体可以参考” 数据湖探索

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定方法和标准,来评测一个模型预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 响应参数 无 请求示例 删除联邦学习作业 delete https://x.x.x.x:123

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    通过调用接口获取用户Token接口获取。 X-Language 是 String 根据自己偏好语言来获取不同语言返回内容,zh-cn或者en_us Content-Type 是 String 发送实体MIME类型 表3 请求Body参数 参数 是否必选 参数类型 描述 name 是 String

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测能力。 目前可支持模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测能力。 目前可支持模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了