华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习常用分析模型 更多内容
  • 应用场景

    库,对异常事务智能分析给出可能原因。 业务实现 APM提供故障智能诊断能力,基于机器学习算法自动检测应用故障。当URL跟踪出现异常时,通过智能算法学习历史指标数据,多维度关联分析异常指标,提取业务正常与异常时上下文数据特征,如资源、参数、调用结构,通过聚类分析找到问题根因。

    来自:帮助中心

    查看更多 →

  • 通过监控器跟踪异常成本

    50元,主要涉及的产品是对象存储服务器等。 单击“发现日期”超链接,可以查看异常成本的详细信息,以及潜在的根因分析。 如图所示,展示可能导致该异常的Top3产品。 步骤三:分析异常成本原因 在“异常成本详细信息”页面,单击潜在产品操作列的“前往对应成本分析查看”。 跳转到“成本分析”页面后,过滤器中会自动携带过滤条件。

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 商品接入类型介绍

    。可广泛应用到图像分类、图像检测、视频分析 语音识别 、产品推荐、异常检测等AI业务场景。 容器类 容器类商品指商家基于Helm、Operator或者华为云原生服务中心OSC服务规范开发的云原生服务,用户订阅服务后通过OSC部署到云上容器托管平台CCE或者智能边缘平台IEF。这类商

    来自:帮助中心

    查看更多 →

  • 部署预测分析服务

    行后,服务部署节点将继续运行,直至状态变为“运行成功”,至此,已将AI应用部署为在线服务服务测试 服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习预测分析项目页面将模型部署上线之后进行服务测试的操作步骤。

    来自:帮助中心

    查看更多 →

  • Kubeflow部署

    平台,这个过程耗时费力,而且需要很多的知识积累。 图1 模型训练环节 Kubeflow诞生于2017年,Kubeflow项目是基于容器和Kubernetes构建,旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布和管理平台。它利用了云原

    来自:帮助中心

    查看更多 →

  • 应用场景

    分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。 业务实现 APM提供故障智能诊断能力,基于机器学习算法自动检测应用故障。当事务出现异常时,通过智能算法学习历史指标数据,多维度关联分析异常指标,提取业务正常与异常时上

    来自:帮助中心

    查看更多 →

  • 什么是应用性能管理服务

    综合判断。 找到应用性能瓶颈后,可以通过CodeArts PerfTest(性能测试 )关联分析生成性能报表。 通过智能算法学习历史指标数据,APM多维度关联分析异常指标,提取业务正常与异常时上下文数据特征,通过聚类分析找到问题根因。 产品优势 非侵入式性能数据采集,无需修改业务代码即可轻松接入APM,数据来源如下:

    来自:帮助中心

    查看更多 →

  • 机器未重启

    configuration\r\nn in progress must be canceled”。 原因分析机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 父主题: 安装IIS

    来自:帮助中心

    查看更多 →

  • 产品术语

    X 训练集 训练集是指在机器学习和模式识别等领域中,用来估计模型的数据集。 消费侧权限 消费侧权限是指一个租户在数据资产管理服务中除了Data Operation Engineer或Data Owner角色的其他用户及其他租户下的所有用户,对于数据集服务具有浏览、查询、订阅和下载已发布数据集的权限。

    来自:帮助中心

    查看更多 →

  • 应用模型简介

    不支持跨源数据汇聚处理,汇聚效率低。 开发效率较低,关键环境编码需要编码学习。例如:不同数据源需要熟悉各类DB语法,学习如何对接不同中间件等等。 针对传统方式的各类问题,产生了新的应用模型管理模式,帮助企业便捷开发,解决上述痛点: 通过业务化的对象模型,统一业务语义,实现数据快速精准查找。 隔离底层物

    来自:帮助中心

    查看更多 →

  • 数据量很少,可以微调吗

    数据量很少,可以微调吗 不同规格的模型对微调的数据量都有相应要求。 如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分记住这些数据,

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 成长地图

    应用容器化改造介绍 应用容器化改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境 更多 技术专题 技术、观点、课程专题呈现 专题学习 轻松进行专题学习,了解数据库使用技巧。 GO语言深入之道 介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家

    来自:帮助中心

    查看更多 →

  • 排序策略

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 应用场景

    通道中,分析平台周期读取通道中的数据分析后将结果应用到调度系统,实现对停车场开放时长和交通资源的调配。 图1 场景示例图 实时文件传输 实时检测客户应用系统中产生的文件,并采集上传到云上,进行离线分析、存储查询及机器学习,对客户进行分类和信息查询,识别出大型客户,加强服务,进一步提升客户满意度。

    来自:帮助中心

    查看更多 →

  • PERF02-02 容量规划

    是一个复杂的过程,涉及到多种因素,包括市场趋势、消费者行为、竞争环境等。通过多种方法的组合,如历史数据分析、资源分析、趋势分析等,以此作为预测需求的基础,并结合人工智能机器学习算法,以便更准确地预测未来的需求,评估工作负载的资源需求。 使预测与工作负载目标保持一致 为了确保预测与

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。

    来自:帮助中心

    查看更多 →

  • 账单管理与成本控制

    长。 成本监控引入机器学习,对客户历史消费数据进行建模,对于不符合历史数据模型的成本增长,识别为异常成本记录,同时提供异常增长的Top潜在原因。 客户可设置监控提醒,定期获取影响成本高的异常记录提醒,并根据系统提供的潜在原因,结合成本分析和业务情况进行深入分析,进而快速做出反应,维持预期的成本支出。

    来自:帮助中心

    查看更多 →

  • 资产分析

    资产分析 对IT设备与基础设备全生命周期的资产管理,从而对资产进行分析,实现资产增值保障。 前提条件 已具备“运营分析”的操作权限。 已在“组态配置”中添加基础设施。 背景信息 IT设备的四种分类为服务器、网络设备、存储和其它。其中,“其他”为“分类管理”页面中除服务器、网络设备、存储以外的其他“IT设备”。

    来自:帮助中心

    查看更多 →

  • 时序分析

    时序分析 时序分析简介 资产时序探索 设置时间窗 时序洞察 收藏夹 自动刷新

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了