AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习测试集 更多内容
  • TPC-H测试集

    TPC-H测试 您可以通过命令生成方法生成TPC-H测试,也可以直接通过脚本生成方法生成,另我们已经给出完整的TPC-H测试供您参考。 由于版本差异,通过脚本生成的SQL测试,可能会存在部分SQL执行不成功的情况,请参考测试进行修正后执行。 命令生成方法 TPC-H 22个标准查询SQL可以用如下方法生成。

    来自:帮助中心

    查看更多 →

  • 策略管理

    图9 策略实验室 规则测试:规则列表页面执行过的规则测试记录汇总展示在规则测试页面,包括事件发生时间(测试 时间)、测试 ID、规则名称/标识、运行状态、决策结果及测试结果报告等内容,规则测试记录可 按多维度进行筛选查看。 图10 规则测试 策略测试:场景策略[运行区/

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 管理机器人测试用例

    管理机器测试用例 前提条件 您已经参照配置一个预约挂号机器人(任务型对话机器人)完成流程和机器人的配置。 管理测试用例有什么用? 自动测试可以使运维人员使用自动测试文本来批量测试对话,来验证机器人的回复是否满足预期,减少验证语料是否正确的工作量。 操作步骤 选择“配置中心>机器

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    mrs MRS 集群绑定弹性公网IP,视为“不合规” sfsturbo-encrypted-check 高性能弹性文件服务通过KMS进行加密 sfsturbo 高性能弹性文件服务(SFS Turbo)未通过KMS进行加密,视为“不合规” 父主题: 合规规则包示例模板

    来自:帮助中心

    查看更多 →

  • 方案概述

    个用于存储数据及数据预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构图 该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据及ModelArts算法、推理脚本、配置文件、模型数据;另一个用于存储数据及数据预测结果。 使用AI开发平台ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用函数工作流

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    在“创建微调数据”页面,参照表1进行相关参数的配置。 表1 数据基础配置参数说明 参数名称 参数说明 基础配置 数据名称 自定义数据名称。支持中英文、数字、下划线(_),长度2-50个字符,以中英文、数字开头。 本文以创建名称为“智能分析数据”为例。 数据描述 对数据进行描述,例如介绍数据集的用途、样例数据等。

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    图3 前往计算节点 选择界面左侧“数据管理>数据预处理”,单击“创建”,可输入作业名称、描述及数据,单击保存。若当前选不到目标数据,可查看该数据是否已参与其他的预处理作业。 目标数据需要对所选字段的分布类型进行严格定义。处理评估/预测数据前建议先使用训练数据进行预处理,以确保当数据处理达到目标需求。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据详情界面优化,更新新建数据和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据进行特征处理。 在旧

    来自:帮助中心

    查看更多 →

  • 最新动态

    纵向联邦作业中支持对两方数据进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本I

    来自:帮助中心

    查看更多 →

  • 乳腺癌数据集作业结果

    1 10 20 测试准确率 (%) 98.016 98.016 98.016 测试AUC 0.996 0.996 0.996 训练时长 (秒) 19 173 372 迭代轮数对模型准确率、训练时长的影响(训练轮数固定为10) 迭代次数 10 25 50 测试准确率 (%) 97

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    一次训练所选取的样本数。 训练数据切分数量 将整个数据切分成多个子数据,依次训练,每个epoch训练一个子数据。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明

    来自:帮助中心

    查看更多 →

  • 附录

    无所遁形。 数据库安全服务DBSS:是一个智能的数据库安全服务,基于机器学习机制和大数据分析技术,提供数据库审计,SQL注入攻击检测,风险操作识别等功能,保障云上数据库安全。 云堡垒机CBH :提供主机管理、权限控制、运维审计、安全合规等功能,支持Chrome等主流浏览器随时随地远程运维,保障运维安全高效。

    来自:帮助中心

    查看更多 →

  • 产品术语

    信息。 X 训练 训练是指在机器学习和模式识别等领域中,用来估计模型的数据。 消费侧权限 消费侧权限是指一个租户在数据资产管理服务中除了Data Operation Engineer或Data Owner角色的其他用户及其他租户下的所有用户,对于数据服务具有浏览、查询、订阅和下载已发布数据集的权限。

    来自:帮助中心

    查看更多 →

  • 数据集

    本地上传:从用户本地上传数据。 样例数据:模型训练服务环境中预置的用户体验数据。包括鸢尾花原始测试、鸢尾花训练、鸢尾花测试、KPI 15分钟数据、KPI 60分钟数据、KPI异常检测数据。 其中鸢尾花原始测试、KPI 15分钟数据和KPI 60分钟数据集中包括空值,用户可以通过特征工程进行数据修复,剔除空值。

    来自:帮助中心

    查看更多 →

  • 性能测试

    性能测试 性能测试是一种软件测试形式,通过性能测试工具模拟正常、峰值及异常负载等状态下对系统的各项性能指标进行测试的活动,它关注运行系统在特定负载下的性能,可帮助你评估系统负载在各种方案中的功能,涉及系统在负载下的响应时间、吞吐量、资源利用率和稳定性,以帮助确保系统性能满足基线要

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了