云监控服务 CES

华为云云监控为用户提供一个针对弹性云服务器、带宽等资源的立体化监控平台。

 
 

    机器学习波动监控 更多内容
  • 异常成本检测规则

    异常成本检测规则 当前支持对按需和包年包月实付成本进行分别监控: 按需异常成本检测规则:通过人工智能算法实现,基于机器学习智能识别费用波动异常。当天实际成本大于当天预测成本的最高值,且差额大于1元,则认为异常。按需影响成本百分比=(实际成本-预测成本最高值)/预测成本最高值。 示

    来自:帮助中心

    查看更多 →

  • 通过监控器跟踪异常成本

    登录“成本中心”。 选择“成本洞察 > 成本监控”。 单击“新建监控器”。 选择“全部产品”类型。 设置监控规则。 步骤二:查看异常成本记录 登录“成本中心”。 选择“成本监控 > 异常成本监控器”。 如图所示,表示本月至今已上报1组异常记录。 单击监控器操作列的“查看历史异常成本记录”,可以查看上报的所有异常记录。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 学习项目

    识别二维码进行学习 操作路径:培训-学习-学习项目-更多-分享 图21 分享1 图22 分享2 数据监控 通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自学记录统计的是学员在知识库进行自学的学习数据

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • COST04-02 主动监控成本

    获取超预算通知,防止潜在成本超支。 创建成本监控,华为云成本中心的成本监控引入机器学习,对客户历史消费数据进行建模,对于不符合历史数据模型的成本增长,识别为异常成本记录,同时提供异常增长的Top潜在原因。客户可设置监控提醒,定期获取影响成本高的异常记录提醒,进而快速做出反应,维持预期的成本支出。

    来自:帮助中心

    查看更多 →

  • DLI作业开发流程

    使用CES监控 DLI 服务 您可以通过云监控服务提供的管理控制台或API接口来检索 数据湖探索 服务产生的监控指标和告警信息。 例如监控DLI队列资源使用量和作业的运行情况。了解更多DLI支持的监控指标请参考使用CES监控DLI服务。 使用CTS审计DLI服务 通过 云审计 服务,您可以记

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 概述

    推荐您使用该监控器,可以帮助您监控关联账号的支出异常。企业主账号只能为每个关联账号创建一个监控器。 成本标签:该类型监控器会监视指定成本标签键值对的支出,如果您采用成本标签来归集成本,推荐您使用该监控器。每个成本标签的标签值只能创建一个监控器。 成本单元:此类型监控器会监视指定成

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 示例 CREATE TABLE houses ( id INTEGER, tax INTEGER

    来自:帮助中心

    查看更多 →

  • 通过调整模型参数对异常告警调优

    少部分告警。 如果不关注这类异常,可以通过配置alert_by_std参数来实现。波动性告警可以防止阈值线学习宽松条件下指标小幅波动的漏告警,但对于不关注阈值线之上数据波动的指标会产生一些不必要的告警。 长时间掉0告警 长时间掉0告警只针对请求量类指标,特点是阈值线为0,测量值长时间掉0,如图5所示。

    来自:帮助中心

    查看更多 →

  • 监控告警问题

    监控告警问题 云监控无法展示Kafka监控数据 Kafka监控显示消息堆积数跟实例里的消息数不一致? Kafka的消费组删除了,怎么监控页面还可以看到这个消费组? 为什么磁盘读/写流量、磁盘平均读/写操作耗时和CPU使用率出现明显波动? 为什么JVM堆内存使用率出现明显波动

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • RES12-04 出现问题后尽快恢复业务

    出现问题后尽快恢复业务 应用系统出现故障后,需要能尽快发现,尽快响应。 风险等级 高 关键策略 可以通过以下途径实现故障的快速发现: 监控:应用系统需要提供业务监控信息,以便实时了解系统运行状态;维护团队需要有专人观测,并在发现故障发生时,需要及时响应。 告警:应用系统在检测到故障后需要及

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了