AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习 分类器 训练 文本 更多内容
  • 训练模型

    练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    指标说明 NPU/GPU利用率 在训练过程中,机器的NPU/GPU占用情况(横坐标时间,纵坐标占用率)。 显存利用率 在训练过程中,机器的显存占用情况(横坐标时间,纵坐标占用率)。 吞吐 在训练过程中,每卡处理tokens数量(tokens/s/p)。每种框架计算方式不一致,例如,ATB可通过“samples

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    型,明确以哪几种板式图片作为模板训练 文字识别 模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件 已授权ModelArts服务和对象存储服务(OBS)。 已在文字识别套件控

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    在图片模板中框选识别区,确定模板图片中需要识别的文字位置。 框选识别区 训练分类器 多模板分类工作流可以通过追加训练分类器,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 训练分类器 评估应用 通过上传测试图片,在线评估模板分类情况和模板的

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 最新动态

    LR纵向联邦学习主要用于具有线性边界的二分类问题,支持用户双方训练联合逻辑回归(LR)模型。相较于单方训练,纵向联邦LR训练覆盖用户双方特征,模型预测精度更高。 TICS 采用SEAL同态加密确保双方数据交互安全,通过批处理技术进一步提升联邦训练性能。 公测 创建纵向联邦学习作业 2 样本对齐支持PSI算法

    来自:帮助中心

    查看更多 →

  • 计费说明

    发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相

    来自:帮助中心

    查看更多 →

  • 文本

    了溢出滚动后,此配置项才生效 文本样式 字体:设置文本的字体。 字号:设置文本的字号。 文本间距:设置文本文本间距 颜色:设置文本的字体颜色。 字体粗细:设置文本的字体粗细。 对齐方式:设置文本的对齐方式,可以设置为左侧、右侧、水平居中。 行高:输入数值或拖动,调整文字的每一行之间的间距。

    来自:帮助中心

    查看更多 →

  • 文本

    文本 词云 时间轴 通用表格 基础表格 趋势 搜索框 下拉选择框 日历组件 翻牌器 时间展示 时间翻牌器 里程碑 排行榜 天气 文本编辑 复选框 日期选择器 指标 标题 树状下拉框 多趋势 树状表格 高级表格 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • 文本

    文本 文本是一种样式组件,可以为这个区域设置一个标题等类似文字,用户不会提交数据。文本和单行文本输入、多行文本输入、富文本呈现的效果,如图1所示。 图1 各文本组件效果呈现图 图2 拖拽文本组件到设计区并设置属性 状态:设置字段的状态,如普通和隐藏。 普通:设置为普通后,页面上该字段可正常显示,且可进行配置。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎基本概念

    据进行训练,以便它们能够识别语言中的模式和规律。大语言模型的应用范围非常广泛,包括 自然语言处理 机器翻译、 语音识别 、智能问答等领域。 向量化模型 向量化模型是将文本数据转换为数值向量的过程。常用于将文本转换为机器可以处理的形式,以便进行各种任务,如文本分类、情感分析、机器翻译等。

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • 文本

    文本 标题 文本 词云 时间器 表格轮播 数字翻牌器 跑马灯 轮播列表柱状图 键值表格 矩形树图 父主题: 组件指南

    来自:帮助中心

    查看更多 →

  • 文本

    文本 文本是一种样式组件,可以为这个区域输入并显示多行文本内容。 在左侧组件区域,选择“文本”组件,并拖拽至设计区域,如图1所示。 图1 拖拽文本组件到设计区并设置属性 基础配置 内容设置:输入具体的文本内容。输入内容不得超过512个字符。 文本设置:设置文本内容的字体、大小和颜色等。

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数,一开始以较小的学习率去更新参数,然后再使用预设学习率,有效避免模型震荡。 表4 LoRA参数配置说明 参数英文名 参数中文名 参数说明 lora_rank 秩 LoRA微调中的秩。

    来自:帮助中心

    查看更多 →

  • 编辑应用

    传模板图片”、“定义预处理”、“框选参照字段”、“框选识别区”、“训练分类器”、“评估”步骤的信息,重新部署模板。操作指引如下: 上传模板图片 定义预处理 框选参照字段 框选识别区 训练分类器 评估应用 部署服务 父主题: 多模板分类工作流

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了