华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    过采样smote 机器学习 更多内容
  • 数据采样

    数据采样 如果数据量太大,造成特征操作等待的时间长,用户可以通过采样功能减少特征处理的数据量,提升特征处理的速度。 数据采样提供如下两种方式,请根据实际情况进行选择: 随机采样:按照比例进行样本数据的随机采样。 分层采样:如果一个特征或多个特征组合样本值的类型多样,为保证采样数据

    来自:帮助中心

    查看更多 →

  • 数据采样

    仅支持对刚导入的数据进行数据采样,不支持对已执行特征操作的数据进行数据采样。 数据采样操作步骤如下。 在特征工程首页,单击特征工程所在行,对应“操作”列的图标,进入特征操作界面。 单击,弹出“采样”对话框。 配置采样参数如表1所示。 表1 采样参数设置 参数名称 参数描述 采样方法 数据样本采样的方法。

    来自:帮助中心

    查看更多 →

  • 采样方式介绍

    采样方式介绍 蒙特卡洛采样 蒙特卡洛采样是一种简单的随机抽样,根据概率分布进行采样,如对样本服从µ=0,δ=1的正态分布,通过蒙特卡洛采样进行采样采样得到的点能满足正态分布要求,如下图所示,采样得到的点会集中µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1 蒙特卡洛采样

    来自:帮助中心

    查看更多 →

  • 数据量很少,可以微调吗

    如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分记住这些数据,导致无法泛化到其他数据上,最终发生过拟合现象。 欠拟合

    来自:帮助中心

    查看更多 →

  • 采样方式有几种?

    采样方式有几种? 蒙特卡洛采样 蒙特卡洛采样是一种简单的随机抽样,根据概率分布进行采样,如对样本服从µ=0,δ=1的正态分布,通过通过蒙特卡洛采样进行采样采样得到的点能满足正态分布要求,但如下图所示,采样得到的点会集中µ=0附近,要想采样得到更边界的点,需要进行大量采样。 图1

    来自:帮助中心

    查看更多 →

  • 基本概念

    75个英文单词,1token≈1.5汉字。 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答中会出现乱码

    训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个参数的值,可以提升模型回答的确定性,避免生成异常内容。

    来自:帮助中心

    查看更多 →

  • 数据准备

    一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced-Learn中的SMOTE算法,进行了数据集的扩充。下表为扩充过后的数据集统计信息。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,回答总是在重复某一句或某几句话

    练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低拟合的风险。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习、深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNe

    来自:帮助中心

    查看更多 →

  • APM指标数据采样策略是什么?

    APM指标数据采样策略是什么? 在使用APM服务过程中用户开启APM数据采集开关后,APM仅采集应用性能指标及调用链相关数据,不涉及个人隐私数据,详细内容请参见数据采集。 APM可以通过非侵入方式采集APM 探针提供的应用数据、基础资源数据、用户体验数据等多项指标。 指标数据周期性完整采集,默认采集周期为1分钟。

    来自:帮助中心

    查看更多 →

  • 算法工程处理的时候必须要先采样吗?

    算法工程处理的时候必须要先采样吗? 算法工程数据采样的目的是提升界面每个特征操作的速度。大数据量操作的时候建议先采样。数据采样后所有的特征操作,都只对采样后的数据进行处理,可以减少特征操作处理的数据量。 父主题: 特征工程

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 什么是传统型95计费?

    带宽大小 * 保底百分比,所以调整完带宽后,保底带宽也会随之变化。日保底带宽以天为粒度计算,每一天的日保底带宽的值为当天设置的最大保底带宽。 例如:一天中进行带宽调整: 300Mbit/s -> 500Mbit/s -> 300Mbit/s,则当天的日保底带宽为:500Mbit/s*保底百分比。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 排序策略

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了