概率分布估计机器学习 更多内容
  • 排序策略-离线排序模型

    adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    low2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 初始化方法 模型参数的初始化方法。 normal:正态分布 平均值:默认0 标准差:0.001 uniform :均匀分布 最小值:默认-0.001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始化初始值为

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    ,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,模型收敛的速度可能会非常慢。当batch_size减小时,学习率也应相应地线性减小。预训练时,默认值为:0

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 什么是Ray

    算法。 通过提供对分布式计算的支持,Ray促进了更快的模型训练和更有效的资源使用,对于那些希望在多台机器上扩展其应用的研究人员和工程师来说,是一个强有力的工具。同时,Ray生态系统还包括一些高级库,例如Ray Tune(用于超参数调整)、RLlib(用于强化学习)、Ray Ser

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 服务分布

    服务分布 表1 服务分布 服务服务器 安装目录 端口 cas uniform-auth 10.190.x.x 10.190.x.x /app/apache-tomcat-9.0.64_uniform_auth/ 8001 父主题: 二三维底板服务维护软件部署

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • 服务分布

    服务分布 表1 服务分布 服务服务器 安装目录 端口 cas uniform-auth 10.190.x.x 10.190.x.x /app/apache-tomcat-9.0.64_uniform_auth/ 8001 父主题: 平台运行维护软件部署

    来自:帮助中心

    查看更多 →

  • 服务分布

    服务分布 表1 服务分布 服务服务器 安装目录 端口 ser-gateway 10.190.x.x 10.190.x.x /app/appdeploy/portal/ser-gateway 8003 Ser-portal /app/appdeploy/portal/ser-portal

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 自动模型优化介绍

    float,一般不建议用户修改 TPE算法 TPE算法全称Tree-structured Parzen Estimator,是一种利用高斯混合模型来学习超参模型的算法。在每次试验中,对于每个超参,TPE为与最佳目标值相关的超参维护一个高斯混合模型l(x),为剩余的超参维护另一个高斯混合模型

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 服务分布

    服务分布 表1 服务分布 服务名 服务器 安装目录 端口 Sf3d 10.190.x.x 10.190.x.x 10.190.x.x /app/apache-tomcat-9.0.64_sf3d 8080 sfmap /app/appdeploy/sfmapTile_V6.0.SP2_arm

    来自:帮助中心

    查看更多 →

  • 状态分布

    状态分布 功能 状态分布。 表1 SLA项 SLA项 定义 请求成功率 >=99.9% 可用性 Tair1 数据一致性 最终一致,不一致时长<1分钟 吞吐量 4000tps TP50请求时延 3000ms TP99.9请求时延 3000ms 注意事项 无 调用方法 GET URI

    来自:帮助中心

    查看更多 →

  • 数据分布

    数据分布 数据分片 Doris表按两层结构进行数据划分,分别是分区和分桶。 每个分桶文件就是一个数据分片(Tablet),Tablet是数据划分的最小逻辑单元。每个Tablet包含若干数据行。各个Tablet之间的数据没有交集,并且在物理上是独立存储的。 一个Tablet只属于一

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 重分布

    扩容重分布整个流程的可靠性,可以选择在扩容时关闭自动重分布功能,在扩容成功之后再手动使用重分布功能执行重分布任务,在这种分段模式下,扩容和重分布都可以做到失败重试。 当前重分布支持离线重分布和在线重分布两种模式,默认情况下,提交重分布任务时将选择离线重分布模式。 在重分布开始前或

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了