微服务引擎 CSE 

 

微服务引擎(Cloud Service Engine)提供服务注册、服务治理、配置管理等全场景能力;帮助用户实现微服务应用的快速开发和高可用运维。支持多语言、多运行时;支持双栈模式,统一接入和管理Spring Cloud、Apache ServiceComb(JavaChassis/GoChassis)、Dubbo侵入式框架和Istio非侵入式服务网格。

 
 

    分布式系统模型深度学习 更多内容
  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    业记录。模型训练页面展示了历史作业的执行情况、模型的评估指标和生成时间。模型的评估指标是使用训练数据集产生的。 单击“查看参数”可以查看该模型训练时指定的机器学习作业参数;逻辑回归作业可以单击“查看中间结果”实时查看每一次迭代的评估指标。 图12 模型训练参数 进行模型评估。在历

    来自:帮助中心

    查看更多 →

  • 产品优势

    自建企业级分布式 区块链 网络并非易事,不仅需要深入专业的区块链知识,同时需要各种复杂的设计和配置,易出错,投入成本高。 BCS 可以帮助企业最快5分钟内完成区块链网络部署,可节省80%的开发和部署成本。 提供全生命周期管理和界面化的智能合约编码、调试与部署。让用户简单使用区块链系统,专注于自身业务应用的创新与开发。

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习模型训练的框架,如Tensorflow、Spark MLlib、M

    来自:帮助中心

    查看更多 →

  • 方案概述

    互动系统、远程互动系统、智慧课堂系统、物联管控系统、智慧教学数据分析系统、智慧物联管控系统、融合式教学教学支持平台、智慧显示系统、音视频系统。可满足的高职教课堂互动教学、远程教学、分组教学、课堂常态录播、督导在线巡课、教学分析评价、教室物联管控等场景需求。 方案优势 融合性:充分

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 精度调优前准备工作

    超参说明 超参 说明 学习率 影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可能会过度调整权重,导致不稳定的训练过程;如果学习率过低,模型训练速度会变慢,甚至陷入局部最优。 batch size 影响训练速度,有时候也会影响模型精度。 micro batch

    来自:帮助中心

    查看更多 →

  • 模型训练

    信息。 单击图标,查看模型评估报告。 评估指标:可以通过数值和图表方式展示各项指标的数据信息。 超参:展示训练集、测试集和标签列的信息。 任务系统参数:展示训练任务的配置参数信息。 创建联邦学习训练任务(WebIDE) 返回“模型训练”菜单界面,单击联邦学习工程所在行,进入工程详情界面。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    北京市1985年-2017年城镇化进度 支持多种经典机器学习分类算法,如K-Means、随机森林、正态贝叶斯、支持向量机、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee

    来自:帮助中心

    查看更多 →

  • 产品概述

    数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的区块链

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成的模型,存储在哪里?支持哪些其他操作模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成的模型,存储在哪里?支持哪些其他操作模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    模型开发基本概念 大模型相关概念 概念名 说明 大模型是什么 大模型是大规模预训练模型的简称,也称预训练模型或基础模型。所谓预训练模型,是指在一个原始任务上预先训练出一个初始模型,然后在下游任务中对该模型进行精调,以提高下游任务的准确性。大规模预训练模型则是指模型参数达到千亿、

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    能化业务系统,提升业务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 什么是内容审核

    Interface,应用程序编程接口)的方式提供给用户,用户通过调用API获取推理结果,帮助用户打造智能化业务系统,提升业务效率。 内容审核-图像 图像 内容审核 ,利用深度神经网络模型对图片内容进行检测,准确识别图像中的暴恐元素、涉黄内容等,帮助业务规避违规风险。 内容审核-文本 文本内

    来自:帮助中心

    查看更多 →

  • IAM 身份中心

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 方案概述

    理,有助于提高管制策略的有效性和针对性。 闭环管理与自主学习机制:国蓝中天实现了污染摸排流程化反馈数据的闭环管理与自主学习。这种机制使得管制系统能够不断学习和优化,进一步提高污染管治的有效性。通过持续的数据反馈和学习系统能够不断完善自身,适应不断变化的污染状况。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了