艾伯特神经网络与机器学习 更多内容
  • 华为人工智能工程师培训

    0的基础高阶操作,TensorFlow2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义发展,深度学习的训练法则,神经网络的类型以及深度学习的应用

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    介绍语言处理相关知识,传统语音模型,深度神经网络模型和高级语音模型 自然语言处理 理论和应用 技术自然语言处理的预备知识,关键技术和应用系统 华为AI发展战略全栈全场景解决方案介绍 介绍华为AI的发展战略和解决方案 ModelArts概览 介绍人工智能、机器学习、深度学习以及ModelArts相关知识

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    实例中创建GPU类型的负载,以tensorflow的图像分类为示例,演示在容器中直接使用GPU训练一个简单的神经网络。 优势 使用容器化的方式做此类人工智能训练推理有如下优势: 容器化消除环境差异,不需要自己安装各种软件和配套版本,如python,tensorflow,cuda

    来自:帮助中心

    查看更多 →

  • 排序策略

    分解后的表示特征的向量的长度。默认10。 神经网络结构 神经网络的层数每一层的神经元节点个数。默认400,400,400。 激活函数 神经网络中的激活函数,将一个(或一组)神经元的值映射为一个输出值。 relu tanh sigmoid 神经元值保留概率 神经网络前向传播过程中以该概率保留神经元的值。默认0

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 机器未重启

    原因分析 该机器在进行过某些Windows功能的启用或关闭后未进行重启。 处理方法 请重启机器。 must log in to complete the current configuration or the configuratio\r\nn in progress must be

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • HCIP-AI EI Developer

    12% 自然语言处理理论和应用 8% 华为AI发展战略全栈全场景解决方案介绍 2% ModelArts概览 4% 图像处理实验 12% 语音处理实验 12% 自然语言处理实验 5% ModelArts平台开发实验 15% 推荐在线学习 HCIP-AI EI Developer 推荐线下培训

    来自:帮助中心

    查看更多 →

  • 新购买的机器人是否可以与旧机器人共享语料库

    新购买的机器人是否可以机器人共享语料库 如果新购买的机器机器人均为“专业版”。可以使用“知识共享”功能,实现语料库共享。 将旧机器人的语料库共享给新的机器人,操作如下。 登录CBS控制台,选择旧机器人,进入问答机器人管理页面。 选择“高级设置 > 知识共享”,并单击“添加机器人ID”,设置共享的内容。

    来自:帮助中心

    查看更多 →

  • FPGA加速型

    想选择。 机器学习机器学习中多层神经网络需要大量计算资源,其中训练过程需要处理海量的数据,推理过程则希望极低的时延。同时机器学习算法还在不断优化中, FPGA以其高并行计算、硬件可编程、低功耗、和低时延等优势,可针对不同算法动态编程设计最匹配的硬件电路,满足机器学习中海量计算和

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    在页面左上角选择“区域”,单击,选择“安全合规 > 企业主机安全”,进入主机安全平台界面。 在左侧导航栏,选择“主机防御 > 应用进程控制”,进入“应用进程控制”界面。 选择“白名单策略”页签。 单击策略状态为“学习完成,未生效”的策略名称,进入“策略详情”界面。 选择“进程文件”页签。 单击待确认进程数量,查看待确认进程。

    来自:帮助中心

    查看更多 →

  • 概述

    概述 可信联邦学习作业是 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArtsDLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练评估。 但是,DLS服务仅提供深度学习技术,而Mode

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 策略参数说明

    use:观看视频/听音乐/阅读 start_time retain_day二选一 long 用户行为起始时间,end_time共存。 end_time retain_day二选一 long 用户行为结束时间,start_time共存。 retain_day start_time二选一 Integer

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了