tensorflow 简单预测 更多内容
  • 创建分子属性预测作业

    创建分子属性预测作业 功能介绍 创建分子属性预测作业。 URI POST /v1/{project_id}/eihealth-projects/{eihealth_project_id}/drug-jobs/admet 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 成本和使用量预测

    成本和使用量预测 预测机制 预测的应用

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI开发基本流程介绍 什么是AI开发 AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行

    来自:帮助中心

    查看更多 →

  • Notebook中快速使用MoXing

    在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎 文件创建完成后,系统默认进入“JupyterLab”编码页面。 图2 进入编码页面 调用mox.file 输入如下代码,实现如下几个简单的功能。 引入MoXing

    来自:帮助中心

    查看更多 →

  • 方案概述

    函数工作流 :用于实现调用销量预测服务的业务逻辑,完成模型的自动部署。 销量预测服务:提供分时销量预测服务,可灵活调整预测时间点,根据历史销量、商品属性、促销活动等基础信息训练得到准确的预测模型。 方案优势 行业化建模经验 内置社区团购类销量预测行业化建模经验,有效提高模型预测准确率。 降本增效

    来自:帮助中心

    查看更多 →

  • 预测类数据集格式要求

    预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,每个数据点都有一个时间戳,表示数据在时间上的位置。它用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种

    来自:帮助中心

    查看更多 →

  • 关联预测算法(link_prediction)

    关联预测算法(link_prediction) 功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1

    来自:帮助中心

    查看更多 →

  • 分子属性预测作业管理

    分子属性预测作业管理 创建分子属性预测作业 查询分子属性预测作业详情 父主题: API(盘古辅助制药平台)

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 在开发环境中部署本地服务进行调试

    端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Predictor的AI引擎为:“XGBoost”、“Scikit_Learn”、“PyTorch”、“TensorFlow”和“S

    来自:帮助中心

    查看更多 →

  • 基础支撑系统

    基础支撑系统 工业AI开发平台设计 本次工业AI开发平台采用华为ModelArts AI技术平台。华为ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及模型部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

    来自:帮助中心

    查看更多 →

  • IoTDA结合ModelArts实现预测分析

    桶。 图2 上传训练数据 登录华为云官方网站,访问AI开发平台,单击“控制台”,进入ModelArts服务。 选择左侧导航栏“自动学习>前往新版>创建项目”,进入创建预测分析界面。 图3 预测分析 选择数据集、标签列(数据中预测结果的列,本示例中为str7),若没有数据集,可以单击“创建数据集”进行创建。

    来自:帮助中心

    查看更多 →

  • 查询分子属性预测作业详情

    String 分子聚类输出结果。 status String 作业结果信息。 failed_reasons Array of FailedReasonRecord objects 部分失败原因和数量。 表13 FailedReasonRecord 参数 参数类型 描述 reason String

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现预测分析

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 创建并配置简单模式工作空间

    创建并配置简单模式工作空间 创建简单模式工作空间 设置工作空间配额 (可选)修改作业日志存储路径 父主题: 购买并配置 DataArts Studio

    来自:帮助中心

    查看更多 →

  • 开发一个简单脚本实例

    开发一个简单脚本实例 使用说明 以创建一个全新的脚本为例,向您介绍如何在低代码平台中新建一个脚本。本脚本实例不涉及对象,及调用接口等内容,脚本只实现请求“http://www.example.com”,返回网站请求的消息头功能。 创建空白脚本 参考登录经典应用设计器中操作,登录经典版应用设计器。

    来自:帮助中心

    查看更多 →

  • TensorFlow在OBS写入TensorBoard到达5GB时停止

    signature check failed. This could be because of a time skew. Attempting to adjust the signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓

    来自:帮助中心

    查看更多 →

  • 训练专属预置镜像列表

    7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 如何在Notebook中安装外部库

    source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8 如果使用其他引擎,请将命令中“TensorFlow-1.8”替换为其他引擎的名称及其版本号。 图1 激活环境 在代码输入栏输入以下命令安装Shapely。 pip

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了