微服务引擎 CSE 

 

微服务引擎(Cloud Service Engine)提供服务注册、服务治理、配置管理等全场景能力;帮助用户实现微服务应用的快速开发和高可用运维。支持多语言、多运行时;支持双栈模式,统一接入和管理Spring Cloud、Apache ServiceComb(JavaChassis/GoChassis)、Dubbo侵入式框架和Istio非侵入式服务网格。

 
 

    spark 机器学习分布式 更多内容
  • Spark应用开发简介

    按不同的模块分,Spark Core和Spark Streaming使用上表中的API接口进行程序开发。而SparkSQL模块,支持CLI或者ThriftServer两种方式访问。其中ThriftServer的连接方式也有Beeline和JDBC客户端代码两种。 spark-sql脚本

    来自:帮助中心

    查看更多 →

  • 什么是Ray

    通过提供对分布式计算的支持,Ray促进了更快的模型训练和更有效的资源使用,对于那些希望在多台机器上扩展其应用的研究人员和工程师来说,是一个强有力的工具。同时,Ray生态系统还包括一些高级库,例如Ray Tune(用于超参数调整)、RLlib(用于强化学习)、Ray Serve(用于模型服务)等,以满足不同场景下的需求。

    来自:帮助中心

    查看更多 →

  • 如何在DLI中运行复杂PySpark程序?

    方库,尤其是基于PySpark的融合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于 DLI 这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DLI服务在其计算资源中已经内置

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • DLI作业开发流程

    使用CES监控DLI服务 您可以通过云监控服务提供的管理控制台或API接口来检索 数据湖探索 服务产生的监控指标和告警信息。 例如监控DLI队列资源使用量和作业的运行情况。了解更多DLI支持的监控指标请参考使用CES监控DLI服务。 使用CTS审计DLI服务 通过 云审计 服务,您可以记录与D

    来自:帮助中心

    查看更多 →

  • 大数据参考架构

    存储技术包括分布式文件系统(如HDFS)、列式数据库(如HBase)等。这些存储系统提供高可靠性、可扩展性和容错性,以支持大规模数据的存储和访问需求。 大数据计算: 大数据计算是对海量数据进行分布式、并行和实时处理的关键环节。主要的计算框架包括Hadoop、Spark、Flink

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 什么是Fabric

    海量存储系统,与华为云的大数据服务组合使用,可大幅度降低成本,帮助企业简单快捷地管理大数据。 分布式Ray Fabric支持分布式计算框架RAY,来帮助客户解决规模日益增大的数据处理和机器学习/深度学习任务对分布式计算的问题,也为数据工程和机器学习工程提供统一的完整Workflow。Fabric

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩

    来自:帮助中心

    查看更多 →

  • Spark

    Spark Spark jar包冲突列表 Jar包名称 描述 处理方案 spark-core_2.1.1-*.jar Spark任务的核心jar包。 Spark可以直接使用开源同版本的Spark包运行样例代码,但是不同版本的spark-core包在使用的时候可能导致互相序列化ID不一样,因此建议使用集群自带jar包。

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩

    来自:帮助中心

    查看更多 →

  • 应用场景

    。一旦请求出现错误,往往要在多台机器上反复翻看日志才能初步定位问题,对简单问题的排查也常常涉及多个团队。 架构梳理难 在业务逻辑变得逐渐复杂以后,很难从代码层面去梳理某个应用依赖了哪些下游服务(数据库、HTTP API、缓存),以及被哪些外部调用所依赖。业务逻辑的梳理、架构的治理

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • Spark应用开发简介

    开发。而SparkSQL模块,支持CLI或者JD BCS erver两种方式访问。其中JDB CS erver的连接方式也有Beeline和JDBC客户端代码两种。详情请参见Spark JDBCServer接口介绍。 spark-sql脚本、spark-shell脚本和spark-sub

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    Storm是一个分布式的、可靠的、容错的数据流处理系统。它会把工作任务委托给不同类型的组件,每个组件负责处理一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了
提示

您即将访问非华为云网站,请注意账号财产安全