超分辨率转换

超分辨率转换

    pytorch深度学习压缩 更多内容
  • 配置HBase数据压缩格式和编码

    V1,其中NONE表示不使用编码。另外,HBase还支持使用压缩算法对HFile文件进行压缩,默认支持的压缩算法有:NONE、GZ、SNAPPY和ZSTD,其中NONE表示HFile不压缩。 这两种方式都是作用在HBase的列簇上,可以同时使用,也可以单独使用。 前提条件 已安装

    来自:帮助中心

    查看更多 →

  • 高效数据压缩算法相关参数

    高效数据压缩算法相关参数 pca_shared_buffers 参数说明:类似于shared_buffers,用于设置页面压缩块地址映射管理buffer的大小。 该参数属于POSTMASTER类型参数,请参考表1中对应设置方法进行设置。 取值范围:最小值64K,最大值16G。 如果设置值小于64K,设置报错。

    来自:帮助中心

    查看更多 →

  • 配置HBase数据压缩格式和编码

    V1,其中NONE表示不使用编码。另外,HBase还支持使用压缩算法对HFile文件进行压缩,默认支持的压缩算法有:NONE、GZ、SNAPPY和ZSTD,其中NONE表示HFile不压缩。 这两种方式都是作用在HBase的列簇上,可以同时使用,也可以单独使用。 前提条件 已安装

    来自:帮助中心

    查看更多 →

  • 如何在代码中打印GPU使用信息

    gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow深度学习框架时也可以使用框架自带的api进行查询。 父主题: 更多功能咨询

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自定义算法实现手写数字识别

    如图3所示的4个文件。 图3 MNIST数据集 “train-images-idx3-ubyte.gz”:训练集的压缩包文件,共包含60000个样本。 “train-labels-idx1-ubyte.gz”:训练集标签的压缩包文件,共包含60000个样本的类别标签。 “t10k-images-idx3-ubyte

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练的框架,如TensorflowSpark MLlib、MXNe

    来自:帮助中心

    查看更多 →

  • 在线预览和解压压缩包

    和解压压缩包。 在文件列表右上角“全部类型”下拉框中选择“压缩包”过滤出压缩包文件。 单击待预览压缩包文件的文件名,系统自动生成压缩包预览页面,用户可以看到压缩包内的全部文件。 压缩文件时设置了加密密码和对文件目录进行加密,则需要输入加密密码才能预览压缩包内文件目录。 压缩包内文

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    介绍语言处理相关知识,传统语音模型,深度神经网络模型和高级语音模型 自然语言处理 理论和应用 技术自然语言处理的预备知识,关键技术和应用系统 华为AI发展战略与全栈全场景解决方案介绍 介绍华为AI的发展战略和解决方案 ModelArts概览 介绍人工智能、机器学习深度学习以及ModelArts相关知识

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    面向AI场景使用OBS+SFS Turbo的存储加速方案概述 应用场景 近年来,AI快速发展并应用到很多领域中,AI新产品掀起一波又一波热潮,AI应用场景越来越多,有自动驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    新建联邦学习作业 功能介绍 新建联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 项目ID,最大32位,由字母和数字组成

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    面向AI场景使用OBS+SFS Turbo的存储加速方案概述 应用场景 近年来,AI快速发展并应用到很多领域中,AI新产品掀起一波又一波热潮,AI应用场景越来越多,有自动驾驶、大模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍 应用容器化改造流程 步骤1:对应用进行分析

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed Megatron-DeepSpeed是一个基于PyTorch深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了