AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    pythoy机器学习 更多内容
  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 附录

    附录 名词解释 基本概念、云服务简介、专有名词解释: 企业主机安全 HSS:是服务器贴身安全管家,通过资产管理、漏洞管理、基线检查、入侵检测、程序运行认证、文件完整性校验,安全运营、网页防篡改等功能,帮助企业更方便地管理主机安全风险,实时发现黑客入侵行为,以及满足等保合规要求。 Web应用防火墙

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

  • 图片/音频标注介绍

    标注、保存标注结果、标注结果发布数据集等功能。可准确、高效、安全地完成各类型数据的标注任务,为客户提供专业的数据标注服务能力,助力客户高效开展算法模型训练与机器学习,快速提高AI领域竞争力。 图片/音频标注数据标注支持选择上传本地数据文件进行标注。上传后的文件存储于OBS中,标注

    来自:帮助中心

    查看更多 →

  • 问答机器人支持哪些语言

    问答机器人支持哪些语言 目前,问答机器人支持中文、英文问答。中国站点机器人支持中文问答,国际站点机器人支持英文问答。如需购买国际站点问答机器人,请在官网切换区域,并开通对应区域的服务。 针对繁体,目前问答机器人支持使用繁体设置问题,但是不支持繁体回答。 父主题: 智能问答机器

    来自:帮助中心

    查看更多 →

  • 智能问答机器人

    智能问答机器人 路数 表示机器人可以同时进行n路对话,即能够同时和n个用户对话。 知识库 知识库即语料库,用于配置、管理问答机器人语料。 一条语料由问题和答案组成。多条语料组成知识库,问答机器人基于知识库进行问答。 技能/意图 技能是指完成某个特定功能的能力。如构建一个订机票、查询天气的机器人。

    来自:帮助中心

    查看更多 →

  • 附录

    和维护。 volcano插件:Volcano是一个基于Kubernetes的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性。 Flink Operator:通过Flink operator ,把Flink

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 智能场景简介

    针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。

    来自:帮助中心

    查看更多 →

  • 产品功能

    护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算 服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • 修订记录

    更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • Storm应用开发简介

    一项简单特定的任务。Storm的目标是提供对大数据流的实时处理,可以可靠地处理无限的数据流。 Storm有很多适用的场景:实时分析、在线机器学习、持续计算和分布式ETL等,易扩展、支持容错,可确保数据得到处理,易于构建和操控。 Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高

    来自:帮助中心

    查看更多 →

  • 对话机器人服务适用哪些场景

    对话机器人服务适用哪些场景 智能问答机器人适用于:机器自动应答,拦截高频、易理解的问题,并根据日志、用户操作记录等进行语料挖掘和知识库构建,提升问答效果,降低企业客服运维人力成本。 父主题: 产品咨询类

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围

    来自:帮助中心

    查看更多 →

  • 什么是Fabric

    海量存储系统,与华为云的大数据服务组合使用,可大幅度降低成本,帮助企业简单快捷地管理大数据。 分布式Ray Fabric支持分布式计算框架RAY,来帮助客户解决规模日益增大的数据处理和机器学习/深度学习任务对分布式计算的问题,也为数据工程和机器学习工程提供统一的完整Workflow。Fabric

    来自:帮助中心

    查看更多 →

  • 应用场景

    全链路性能追踪:Web服务、缓存、数据库全栈跟踪,性能瓶颈轻松掌握。 故障智能诊断 业务痛点 海量业务下,出现百种指标监控、KPI数据、调用跟踪数据等丰富但无关联的应用运维数据,如何通过应用、服务、实例、主机和事务等多视角分析关联指标和告警数据,自动完成故障根因分析;如何基于历史数据学习与运维经验库,对异常事务智能分析给出可能原因。

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    在介绍Workflow之前,先了解MLOps的概念。 MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations)的组合实践。机器学习开发流程主要可以定义为四个步骤:项目设计、

    来自:帮助中心

    查看更多 →

  • 产品优势

    面检测资产脆弱性。 轻量化部署,一键扫描 依托于华为乾坤安全云服务,将扫描引擎部署在云端,客户侧无需安装任务软件。 扫描配置简单,一键扫描,简单易用。 精准修复优先级推荐, 识别真实风险 基于华为威胁信息库和机器学习智能评估技术,计算漏洞风险评分—漏洞优先级评级VPR。 漏洞评分越高,风险越高,客户需要优先修复。

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    ;+=<>/ 如果OBS路径符合要求,请您按照服务具体情况执行3。 自动学习项目不同导致的失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据集标注的方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了