AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    训练机器学习的电脑 更多内容
  • 使用流程

    自定义算法。 训练算法 模型评测 在机器学习中,通常需要使用一定方法和标准,来评测一个模型预测精确度,用于衡量一个模型及其标注结果可信度。自动驾驶领域模型多用于目标检测,如识别并标注出图像中车辆、行人、可行区域等对象。 模型评测 编译镜像 编译镜像可以将训练模型转换为特定

    来自:帮助中心

    查看更多 →

  • 图片/音频标注介绍

    图片/音频标注是为数据工程师、数据科学家等提供辅助标注工具。提供界面化数据查看、单点数据标注、保存标注结果、标注结果发布数据集等功能。可准确、高效、安全地完成各类型数据标注任务,为客户提供专业数据标注服务能力,助力客户高效开展算法模型训练机器学习,快速提高AI领域竞争力。 图片/音

    来自:帮助中心

    查看更多 →

  • 什么是对话机器人服务

    什么是对话机器服务 对话机器服务(Conversational Bot Service) 是一款基于人工智能技术,针对企业应用场景开发服务,主要提供智能问答机器人功能。智能问答机器人旨在帮助企业快速构建,发布和管理基于知识库智能问答机器人系统。 对话机器服务包含以下子服务:

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 自动学习中偏好设置的各参数训练速度大概是多少

    自动学习中偏好设置各参数训练速度大概是多少 偏好设置中: performance_first:性能优先,训练时间较短,模型较小。对于TXT、图片类训练速度为10毫秒。 balance:平衡 。对于TXT、图片类训练速度为14毫秒 。 accuracy_first:精度优先,训练

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 在电脑端查看许可单

    许可创建时录入名称 许可编号 许可创建时,录入“许可编号” 许可场景名称 许可单引用“许可场景”名称 关联任务 许可单关联任务 许可业务状态 许可单的当前实时业务状态 许可系统状态 许可单的当前实时系统状态 组织单元 许可单对应“组织单元” 工作负责人 许可单“工作负责人”

    来自:帮助中心

    查看更多 →

  • 取得正在训练的模组

    未授权:1. 请确认是否购买了相关服务。 2. 请联系客服人员检查您账号的当前状态。 响应状态码: 404 请求内容未找到:请检查请求路径。 响应状态码: 500 业务失败:请依次确认您请求中各参数取值。 错误码 无。 报文样例 场景描述:取得正在训练模组 请求头: x-app-

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    Kubernetes存在问题 Kubeflow在调度环境使用是Kubernetes默认调度器。而Kubernetes默认调度器最初主要是为长期运行服务设计,对于AI、大数据等批量和弹性调度方面还有很多不足。主要存在以下问题: 资源争抢问题 TensorFlow作业包含Ps和W

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 训练的权重转换说明

    --loader:选择对应加载模型脚本名称。 --saver:选择模型保存脚本名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    向上前进步长参数。默认0.001。 数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长的参数。默认0

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型交易市场,是AI消费者接触NAIE云服务线上门户,是AI消费者对已上架AI模型进行查看、试用、订购、下载和反馈意见场所。 AI引擎 可支持用户进行机器学习、深度学习、模型训练框架,如Tensorflow、Spark MLlib、M

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • 如何在训练中加载部分训练好的参数?

    as: conv2d/weights. 通过以下方式控制需要训练参数列表。其中,“trainable_include_patterns”为需要训练参数列表,“trainable_exclude_patterns”为不需要训练参数列表。 --trainable_exclude_patterns:

    来自:帮助中心

    查看更多 →

  • 什么是Workflow

    Graph,DAG)开发。一个DAG是由节点和节点之间关系描述组成。开发者通过定义节点执行内容和节点执行顺序定义DAG。绿色矩形表示为一个节点,节点与节点之间连线则是节点关系描述。整个DAG执行其实就是有序任务执行模板。 图3 工作流 Workflow提供样例 Mod

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了