语言理解 NLPLU

语言理解 NLPLU

商用服务调用费用低至¥1.5/千次

商用服务调用费用低至¥1.5/千次

    文本分类机器学习模型 更多内容
  • 使用自动学习实现零代码AI开发

    使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 创建物体检测项目

    ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。 在您需要的自动学习项目列

    来自:帮助中心

    查看更多 →

  • 创建自动学习项目有个数限制吗?

    创建自动学习项目有个数限制吗? ModelArts自动学习,包括图像分类项目、物体检测项目、预测分析项目、声音分类和文本分类项目。您最多只能创建100个自动学习项目。 父主题: 创建项目

    来自:帮助中心

    查看更多 →

  • 自动学习的每个项目对数据有哪些要求?

    自动学习的每个项目对数据有哪些要求? 图像分类对数据集的要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 修订记录

    变换、优化模型训练、特征迁移增加迁移评估等,对应刷新JupyterLab开发平台。 模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档的模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务模型包更新发布推理服务,对应刷新模型管理。

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 计费说明

    或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关

    来自:帮助中心

    查看更多 →

  • 创建图像分类项目

    ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。 在您需要的自动学习项目列

    来自:帮助中心

    查看更多 →

  • 部署服务

    如果部署服务使用专属资源池,需要在ModelArts创建专属资源池。 操作步骤 在“服务部署”页面,按表1填写服务的相关参数,然后单击右下角的“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明 服务名称 待部署的服务名称,首次部署服务请单击可修改默认服务名称。 如果

    来自:帮助中心

    查看更多 →

  • 更新应用版本

    选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前应用各个版本的“版本名称”、“进展”、“模型精准率”、“模型召回率”、“F1值”、“更新时间”和可执行的“操作”。 图2 开发版本列表

    来自:帮助中心

    查看更多 →

  • 最新动态

    续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 准备数据

    准备数据 在使用多语种文本分类工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计分类标签 首先需要确定好文本分类的标签,即希望识别出文本的一种结果。例如分类用户对商品的评论,则可以以“positive”、“neutral”、“negative”等作为

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • ModelArts

    功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据

    来自:帮助中心

    查看更多 →

  • 评估模型

    针对当前版本的模型,经过“整体评估”和“详细评估”后,如果根据业务需求,模型还需继续优化,请单击“上一步”,回到“模型训练”步骤,详细操作指导请见训练模型。 如果模型已达到业务需求,请单击“发布部署”,进入“服务部署”步骤,详情请见部署服务。 父主题: 通用文本分类工作流

    来自:帮助中心

    查看更多 →

  • 通用文本分类工作流

    通用文本分类工作流 工作流介绍 准备数据 选择数据 标注数据 训练模型 评估模型 部署服务 发布数据集 管理数据集版本 父主题: 自然语言处理 套件

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人版本 智能问答机器人支持基础版、高级版、专业版、旗舰版四种规格,各规格的差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习

    来自:帮助中心

    查看更多 →

  • 部署服务

    费。 如果部署服务使用专属资源池,需要在ModelArts创建专属资源池。 操作步骤 在“服务部署”页面,按表1填写服务的相关参数,然后单击“部署”。 图1 服务部署 表1 服务部署参数说明 参数 说明 服务名称 待部署的服务名称,首次部署服务请单击可修改默认服务名称。 如果在不

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了