AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习数据集 mnist 更多内容
  • 导入和预处理训练数据集

    下载Fashion MNIST图片数据集,该数据集包含了10个类型共60000张训练图片以及10000张测试图片。 1 2 3 # download Fashion MNIST dataset fashion_mnist = keras.datasets.fashion_mnist (train_images

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自定义算法实现手写数字识别

    # 将 raw mnist 数据集转换为 pytorch mnist 数据集 convert_raw_mnist_dataset_to_pytorch_mnist_dataset(args.data_url) # 分别创建训练和验证数据集 dataset1

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自定义算法实现手写数字识别

    # 将 raw mnist 数据集转换为 pytorch mnist 数据集 convert_raw_mnist_dataset_to_pytorch_mnist_dataset(args.data_url) # 分别创建训练和验证数据集 dataset1

    来自:帮助中心

    查看更多 →

  • 使用Kubeflow和Volcano实现典型AI训练任务

    Volcano是一款构建于Kubernetes之上的增强型高性能计算任务批量处理系统。作为一个面向高性能计算场景的平台,它弥补了Kubernetes在机器学习深度学习、HPC、大数据计算等场景下的基本能力缺失,其中包括gang-schedule的调度能力、计算任务队列管理、task-topology

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    两种任务类型。 图2 新建作业 在弹出的界面进行数据选择,选择两方数据集作为整个作业的数据集,必须选择一个当前代理的数据集,另一个数据集可以来自空间中的任意一方。两方的数据集中一方数据集只含有特征,另一方的数据集必须含有标签。 重试:开关开启后,执行失败的作业会根据配置定时进行重

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 开发用于预置框架训练的代码

    训练输入选择对应的OBS路径或者数据集路径;训练输出选择对应的OBS路径。 训练代码完整示例 训练代码示例中涉及的代码与您使用的AI引擎密切相关,以下案例以Tensorflow框架为例。案例中使用到的“mnist.npz”文件需要提前下载并上传至OBS桶中,训练输入为“mnist.npz”所在OBS路径。

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版

    来自:帮助中心

    查看更多 →

  • 功能介绍

    支持样本平衡性综合分析,便于用户直观的了解数据集中不同类别样本的分布情况,判断样本集的分布平衡性,并可在组织内共享数据集。 图10 数据均衡性分析 图11 共享样本数据库管理 全流程可视化自主训练,用户可选择网络结构、数据集利用云端算力进行自动学习,也可以利用notebook进行算法开

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    序号 流程环节 说明 1 基于微调数据集进行模型微调 创建微调数据集 收藏预置微调数据集 对于需要个性化定制模型或者在特定任务上追求更高性能表现的场景,往往需要对大语言模型进行模型微调以适应特定任务。微调数据集是模型微调的基础,通过在微调数据集上进行训练从而获得改进后的新模型。 创建模型微调任务

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了