AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习过度参数化 更多内容
  • 同层参数化路径的Hint

    效。 dest为参数路径的目标表,即索引所在的表。 src为参数路径的参数表。 index_list为参数路径使用的索引序列,为空格隔开的字符串。 示例 nestloop_index示例: 在t1表上传入t2,t3表的t2.c1和t3.c2进行索引扫描(参数路径): gaussdb=#

    来自:帮助中心

    查看更多 →

  • 同层参数化路径的Hint

    同层参数路径的Hint 功能描述 通过predpush_same_level Hint来指定同层表或物化视图之间参数路径生成。 语法格式 1 2 predpush_same_level(src, dest) predpush_same_level(src1 src2 ...,

    来自:帮助中心

    查看更多 →

  • 同层参数化路径的Hint

    同层参数路径的Hint 功能描述 通过predpush_same_level、nestloop_index Hint来指定同层表或物化视图之间参数路径生成。 跨层参数路径hint请参考参数路径的Hint。 语法格式 1 2 3 4 predpush_same_level([@queryblock]

    来自:帮助中心

    查看更多 →

  • 5G消息 Message over 5G

    应用容器改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境 步骤2:准备应用运行环境 步骤2:准备应用运行环境 更多 访问外网 应用容器改造介绍 应用容器改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境 更多 常见问题 了解更多常见问题、案例和解决方案 高频常见问题

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    提供高性能、高可靠性、高性价比的基因测序计算、存储、分析和AI能力支持,让科研过程标准、可执行。 药物研发 提供多个药物研发AI模型、AI算法、药物 知识图谱 ,支撑药企高效地开展药物研发工作。 医疗智能体 深度学习算法及药物分析服务融入药物研发过程,让药企能更快速高效地完成药物研发,节约研发成本。

    来自:帮助中心

    查看更多 →

  • 概述

    Interface,应用程序编程接口)的方式提供给用户,用户通过实时访问和调用API获取推理结果,帮助用户自动采集关键数据,打造智能业务系统,提升业务效率。 您可以使用本文档提供的天筹求解器服务API的描述、语法、参数说明及样例等内容,进行相关操作,例如天筹求解器服务包含的二维切割等具体接口使用说明。支持的全部操作请参见2

    来自:帮助中心

    查看更多 →

  • 执行作业

    可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业 在弹出的界面配置执行参数,配置执行参数可选择常规配置与自定义配置。填写完作业参数,单击“确定”即可开始训练作业。 常规配置:通过界面点选算法使用的常规参数,具体支持的参数请参考表1。

    来自:帮助中心

    查看更多 →

  • 最新动态

    订购华为RPA-WeAutomate工具 华为RPA-WeAutomate工具结合OCR、NLP等深度学习AI算法,通过模拟并增强人与计算机的交互过程,实现工作流程自动。快速构建企业级智能自动平台,一站式获取RPA+AI+小程序能力,助力客户打通数字转型最后一公里。 商用 2021年5月 序号 功能名称 功能描述

    来自:帮助中心

    查看更多 →

  • 方案概述

    的精装数字化解决方案: 在样板间装修完工前,可通过3D云设计软件实现方案自动设计,效果图高保真渲染、短视频制作,提前1~2个月开展拓客推广; 全自动的装修设计,可实现全屋SKU可视替换,提升个性精装房售卖转化率30%; 方案设计定稿后,系统可自动对材料算量拆单,实现设计与

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构数据的模型自动训练应用,能够对结构数据进行分类或者数据预测。可用于用户画像分析,实现精确营销。也可应用于制造设备预测性维护,根据设备实时数据的分析,进行故障识别。

    来自:帮助中心

    查看更多 →

  • 基本概念

    特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一、数值、标准、特征离散、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的图标中的“数据处理”菜单下面的数据处理算子。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 隐向量层L2正则系数 隐向量层使用的L2正则系数,作用如“L2正则项系数”描述。默认0.001。 wide部分L2正则系数 wide层使用的L2正则系数,作用如“L2正则项系数”描述。默认0.001。 最大迭代轮数 模型训练的最大迭代轮数,默认50。

    来自:帮助中心

    查看更多 →

  • 应用场景

    反馈,同时结合用户的长期兴趣和短期兴趣进行个性推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。 兴趣文章命中率高,用户粘性增强,PV增幅明显。

    来自:帮助中心

    查看更多 →

  • 云数据迁移 CDM

    步骤2:准备应用运行环境 更多 云服务器 卡顿 应用容器改造介绍 应用容器改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境 更多 Ping不通 应用容器改造介绍 应用容器改造流程 步骤1:对应用进行分析 更多 访问外网 应用容器改造介绍 应用容器改造流程 步骤1:对应用进行分析 步骤2:准备应用运行环境

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    Programming Interface,应用程序编程接口)的方式提供给用户,用户通过实时访问和调用API获取推理结果,帮助用户自动采集关键数据,打造智能业务系统,提升业务效率。

    来自:帮助中心

    查看更多 →

  • 筛选特征

    v值,一般而言iv值较高的特征更有区分性,应该作为首选的训练特征;过低的iv值没有区分性会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。 例如这里大数据厂商提供的f4特征iv值是0,说明这个特征对于标签的识别没有区分度,可以不选用;而f0、f2特征的iv值中等,适合作为模型的训练特征。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一个满意的模型之后,需要将其应用到正式的实际数据或新产生数据中,进行预测、评价、或以可视和报表的形式把数据中的高价值信息以精辟易懂的形式提供给决策人员,帮助其制定更加正确的商业策略。 父主题: AI开发基础知识

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • GPU加速型

    单卡GPU性能 使用场景 备注 图形加速型 G6v NVIDIA T4(vGPU虚拟) 2560 8.1TFLOPS 单精度浮点计算 130INT8 TOPS 260INT4 TOPS 云桌面、图像渲染、3D可视、重载图形设计。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了