端边云车联网Serverless数据湖解决方案

端边云车联网Serverless数据湖解决方案

    深度学习大量数据处理6 更多内容
  • GPU加速型

    GPU加速实例总览 主售:计算加速型P2s、推理加速型Pi2、图形加速增强型G6 在售:除主售外的其他GPU机型均为在售机型,如果在售机型售罄,推荐使用主售机型 图像加速G系列 图形加速增强型G6v 图形加速增强型G6 图形加速增强型G5 图形加速增强型G3 图形加速型G1 计算加速P系列

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    别准确率越低。 针对历史版本的模型,可以根据当前模型调节直接返回答案的阈值。 在“模型管理”页面,在模型列表的操作列单击“调整阈值”。 图6 调整阈值 如下图所示,您可以根据实际需求,选择合适的阈值,然后单击“确定”。 用户问法与标准问的相似度大于直接回答阈值时,直接返回相应答案。

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 示例2:加解密大量数据

    "020098005273E14E6E8E95F5463BECDC27E80AF820B9FC086CB47861899149F67CF07DAFF2810B7D27BDF19AB7632488E0926A48DB2FC85BEA905119411B46244C5E6B8036C60A0B0

    来自:帮助中心

    查看更多 →

  • 数据处理支持什么类型脚本?

    数据处理支持什么类型脚本? 目前数据处理仅支持Python脚本。数据处理集成了华为公有云ModelArts服务的引擎,用来执行用户自编码的Python脚本。 父主题: 数据处理

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 创建数据处理任务版本

    检测和图像分类,键“task_type”对应的值为“object_detection”或“image_classification”。 表6 WorkPath 参数 是否必选 参数类型 描述 name 否 String 数据集的名称。 output_path 否 String 输

    来自:帮助中心

    查看更多 →

  • 个人数据处理说明

    个人数据处理说明 个人数据清单 使用目的 存留期 用户屏幕图像 投屏中屏幕镜像信息投放 IdeaShare不保存个人数据 用户音频输出口 投屏中音频信息投放 用户IP地址 投屏连接

    来自:帮助中心

    查看更多 →

  • 大数据分析

    均涌现出超高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,

    来自:帮助中心

    查看更多 →

  • 常用概念

    。相比标准转码,转码速度可提升6倍,适用于30分钟以上的长视频。 一进多出 转码的一种方式,是指一个视频源文件在一个转码任务中输出多个分辨率、码率的视频文件,以满足不同终端、不同网速的播放需求。 画质增强 是指通过传统成熟的超分辨率算法与AI深度学习的画质增强算法相结合,达到视频

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    识别准确率高 采用最新一代 语音识别 技术,基于深度神经网络(Deep Neural Networks,简称DNN)技术,大大提高了抗噪性能,使识别准确率显著提升。 识别速度快 把语言模型、词典和声学模型统一集成为一个大的神经网络,同时在工程上进行了大量的优化,大幅提升解码速度,使识别速度在业内处于领先地位。

    来自:帮助中心

    查看更多 →

  • 功能架构

    服务接收API用户任务request 2. 根据用户request算法类型调用对应的算法套件 3. 引擎创建任务,通过环境变量传递任务参数 6. 启动算法实例,调用数据处理接口进行算法深度校验、运行算法 7. 根据算法配置,处理输出

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 查询数据处理的算法类别

    查询数据处理的算法类别 功能介绍 查询数据处理的算法类别。 调试 您可以在 API Explorer 中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/processor-tasks/items

    来自:帮助中心

    查看更多 →

  • 套餐包

    务需求选择使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域

    来自:帮助中心

    查看更多 →

  • 管理和查看数据处理任务

    查看数据处理任务详情 登录ModelArts管理控制台,在左侧的导航栏中选择“数据准备>数据处理”,进入“数据处理”页面。 在数据处理列表中,单击数据处理任务名称,进入数据处理任务的版本管理页面。您可以在该页面进行数据处理任务的“修改”与“删除”。 图1 数据处理版本管理页面 您可

    来自:帮助中心

    查看更多 →

  • 停止数据处理任务的版本

    用户项目ID。获取方法请参见获取项目ID和名称。 task_id 是 String 数据处理任务ID。 version_id 是 String 数据处理任务的版本ID。 请求参数 无 响应参数 无 请求示例 停止数据处理任务的版本 POST https://{endpoint}/v2/{pr

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了