基于PyTorch NPU快速部署开源大模型

基于PyTorch NPU快速部署开源大模型

    机器学习推理 更多内容
  • 云端推理框架

    云端推理框架 推理服务 异步推理 模型仓库 模板管理 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • Standard推理部署

    Standard推理部署 模型管理 部署上线

    来自:帮助中心

    查看更多 →

  • 创建推理作业

    ensemble_noise_perlin_scale 否 Double 集合预报的Perlin加噪scale。取值范围:(0, 0.5)。 ensemble_noise_perlin_octave 否 Long 用于选择集合预报的Perlin加噪octave。Perlin噪音的octav

    来自:帮助中心

    查看更多 →

  • 创建推理作业

    创建推理作业 功能介绍 创建科学计算大模型中海洋类模型的推理作业。 URI POST /tasks 科学计算大模型的API请求地址可以直接在ModelArts Studio大模型开发平台获取: 登录ModelArts Studio大模型开发平台,进入所需空间。 获取调用路径及部署ID。单击左侧“模型开发

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    s Lite的DevServer。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    s Lite的DevServer。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    Cluster和昇腾Snt9B资源。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.3版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    Cluster和昇腾Snt9B资源。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 支持FP16和BF16数据类型推理。 Lite k8s Cluster驱动版本推荐为23

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样本测试后添加示例样本的个数。默认为3,取值范围为0~5整数。 is_devserver: 是否DevServer部署方式,Tru

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    3,取值范围为0~5整数。 is_devserver: 是否DevServer部署方式,True表示DevServer模式。False表示ModelArts Standard模式。 vllm_model:对应Step4 部署并启动推理服务中的模型地址参数model,模型格式是Huggingface的目录格式。

    来自:帮助中心

    查看更多 →

  • 华为机器翻译(体验)

    华为机器翻译(体验) 华为云自言语言处理服务机器翻译功能。机器翻译(Machine Translation,简称MT),为用户提供快速准确的翻译服务,帮助用户跨语言沟通,可用于文档翻译等场景中,包含“文本翻译”和“语种识别”执行动作。 连接参数 华为机器翻译(体验)连接器无需认证,无连接参数。

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery在线推理服务部署模型

    。 表2 推理效果的指标介绍 指标名称 指标说明 CPU使用率 在推理服务启动过程中,机器的CPU占用情况。 内存使用率 在推理服务启动过程中,机器的内存占用情况。 显卡使用率 在推理服务启动过程中,机器的NPU/GPU占用情况。 显存使用率 在推理服务启动过程中,机器的显存占用情况。

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    n上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    execute untrusted model-generated code. Although # it is highly unlikely that model-generated code will do something overtly # malicious in response

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    vllm_path:构造vllm评测配置脚本名字,默认为vllm。 host:与起服务的host保持一致,比如起服务为0.0.0.0,host设置也为0.0.0.0。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了