云搜索服务 CSS 

 

云搜索服务是一个基于Elasticsearch且完全托管的在线分布式搜索服务,为用户提供结构化、非结构化文本的多条件检索、统计、报表。完全兼容开源Elasticsearch软件原生接口。它可以帮助网站和APP搭建搜索框,提升用户寻找资料和视频的体验;还可以搭建日志分析平台,在运维上进行业务日志分析和监控,在运营上进行流量分析等等。

 
 

    支持向量机 深度学习 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域感知因子分解机是因子分解机的改进版本,因子分解每个特征对其他域的隐向量都一致,而域感知因子分解每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解深度网络因子分解,结合了因子分解深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组

    来自:帮助中心

    查看更多 →

  • Hive是否支持向量化查询

    Hive是否支持向量化查询 问题 当设置向量化参数hive.vectorized.execution.enabled=true时,为什么执行hive on Tez/Mapreduce/Spark时会偶现一些空指针或类型转化异常? 回答 当前Hive不支持向量化执行。 向量化执行有很

    来自:帮助中心

    查看更多 →

  • 排序策略

    batch模式计算速度快于full模式。 隐向量长度 分解后的特征向量的长度。默认10。 保存根路径 单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 域感知因子分解-FFM 域感知因子分解是因子分解的改进版本,因子分解每个特征对其他域的隐向量都一致,

    来自:帮助中心

    查看更多 →

  • Hive是否支持向量化查询

    Hive是否支持向量化查询 问题 当设置向量化参数hive.vectorized.execution.enabled=true时,为什么执行hive on Tez/Mapreduce/Spark时会偶现一些空指针或类型转化异常? 回答 当前 MRS Hive不支持向量化执行。 向量化执行

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 句向量

    向量 功能介绍 输入句子,返回对应的句向量。 具体Endpoint请参见终端节点。 调用华为云NLP服务会产生费用,本API支持使用基础套餐包,购买时请在 自然语言处理 价格计算器中查看基础套餐包和领域套餐包支持的API范围。 本API调用限制为20次/秒。 调试 您可以在 API Explorer 中调试该接口。

    来自:帮助中心

    查看更多 →

  • 向量化引擎支持的数据类型

    向量化引擎支持的数据类型 向量化引擎支持的数据类型如表1所示。 表1 向量化引擎支持的数据类型 类别 数据类型 长度 是否支持 Numeric Types tinyint [unsigned] 1 支持 smallint [unsigned] 2 支持 mediumint [unsigned]

    来自:帮助中心

    查看更多 →

  • 向量化引擎支持的数据类型

    向量化引擎支持的数据类型 向量化引擎支持的数据类型如表1所示。 表1 向量化引擎支持的数据类型 类别 数据类型 长度 是否支持 Numeric Types tinyint [unsigned] 1 支持 smallint [unsigned] 2 支持 mediumint [unsigned]

    来自:帮助中心

    查看更多 →

  • 功能介绍

    贝叶斯、支持向量、期望最大EM等,实现遥感影像快速分类 图6 基于K-Means算法的分类结果图 图7 基于正态贝叶斯的分类结果图 支持调用PIE-Engine AI平台的丰富深度学习模型进行实时解译 图8 调用PIE-Engine AI平台模型进行水体解译结果图 支持用户通过

    来自:帮助中心

    查看更多 →

  • 文本向量化

    文本向量化 功能介绍 将用户输入的文本转化成数字向量,多用于从向量化知识库中查询相似的文本。 URI POST https://aiae.appstage.myhuaweicloud.com/v1/embeddings 请求参数 表1 请求Header参数 参数 是否必选 参数类型

    来自:帮助中心

    查看更多 →

  • 应用场景

    营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景的多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统的深度诊断服务,提供GuestOS内常见问题的自诊断能力,您可以通过方便快捷的自诊断服务解决操作系统内的常见问题。 本文介绍支持深度诊断的操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    ,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下划线、

    来自:帮助中心

    查看更多 →

  • 概述

    概述 图像搜索 Image Search )基于深度学习与图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助您从指定图库中搜索相同或相似的图片。 图像搜索服务以开放API(Application Programming Interface,应用程序编程接口)的

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 向量检索特性介绍

    向量检索特性介绍 向量检索支持对图像、视频、语料等非结构化数据提取的特征向量数据进行最近邻或近似近邻检索。 原理说明 向量检索从本质上讲,其思维框架和传统的检索方法没有区别。为了提升向量检索的性能,通常需要解决以下两个问题: 减少候选向量集 和传统的文本检索类似,向量检索也需要某

    来自:帮助中心

    查看更多 →

  • 管理向量索引缓存

    管理向量索引缓存 CSS 向量检索引擎使用C++实现,使用的是堆外内存,该插件提供了接口对向量索引的缓存进行管理。 查看缓存统计信息 GET /_vector/stats 在向量插件实现中,向量索引与Lucene其他类型索引一样,每一个segment构造并存储一份索引文件,在查询

    来自:帮助中心

    查看更多 →

  • 向量数据类型

    boolvector不支持NULL、Nan、Inf作为元素,当向量中含有NULL值,数据库会报错。 boolvector不能为NULL,当插入、更新或转换NULL值作为向量数据时,数据库会报错。 向量类型的使用 向量类型的使用示例如下: -- 创建含向量类型的表,同时设定数据维度。建表时向量类型必须要指定维度。

    来自:帮助中心

    查看更多 →

  • 向量操作函数接口

    向量操作函数接口 向量操作函数实现的功能包括:向量大小比较、向量加法、向量减法、向量按位乘法等。 inner_product 功能说明:计算两个向量的内积。 入参1的类型:floatvector 入参2的类型:floatvector 出参类型:float8 代码示例: gaussdb=#

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了