颜色识别 深度学习模型 更多内容
  • AI开发基本流程介绍

    还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    什么是 图像搜索 图像搜索( Image Search ,又称为多媒体搜索)基于深度学习与图像识别技术,是一套开箱即用的场景化搜索服务,支持图像等数据的管理和搜索,提供多种通用预置场景的搜索能力,并支持低成本、高敏捷的定制化服务,为用户提供安全、可靠、快速、准确的一键部署场景化内容搜索需求。

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 训练模型

    训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在 自然语言处理 套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型

    来自:帮助中心

    查看更多 →

  • 执行作业

    ,包括作业输入条件、输出结果、执行环境、合作方信息和模型贡献度等。 图2 展示作业报告 执行纵向作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 排序策略

    单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    图3 模型评估报告 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    业记录。模型训练页面展示了历史作业的执行情况、模型的评估指标和生成时间。模型的评估指标是使用训练数据集产生的。 单击“查看参数”可以查看该模型训练时指定的机器学习作业参数;逻辑回归作业可以单击“查看中间结果”实时查看每一次迭代的评估指标。 图12 模型训练参数 进行模型评估。在历

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 设置AstroZero标准页面栅格容器组件属性

    在“数据绑定”中,单击“值(value)绑定”中的,进入选择模型页面。 单击“新增模型”,进入新增模型页面。 设置模型名称与来源,单击“下一步”。 图2 定义模型 AstroZero支持自定义、对象、服务和事件四类模型,每类模型都包含参数定义和方法定义。方法是在模型上定义的API,通常会在前台组件关联的

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了