AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    训练深度学习模型时出现不收敛 更多内容
  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 查看NLP大模型训练状态与指标

    见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如worker-0表示第一个工作节点)进行筛选查看。

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    LEN)为训练设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    LEN)为训练设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    LEN)为训练设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    LEN)为训练设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    LEN)为训练设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。

    来自:帮助中心

    查看更多 →

  • 训练模型时引用依赖包,如何创建训练作业?

    txt”文件内容如下所示: alembic==0.8.6 bleach==1.4.3 click==6.6 依赖包为whl包 如果训练后台不支持下载开源安装包或者使用用户编译的whl包,由于系统无法自动下载并安装,因此需要在“代码目录”放置此whl包,同时创建一个命名为“pip-requirements

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    LEN)为训练设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。也可以使用可视化工具TrainingLogParser查看loss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。

    来自:帮助中心

    查看更多 →

  • 如何在模型训练时,设置日志级别?

    如何在模型训练,设置日志级别? 在TensorFlow的log日志等级如下: - 0:显示所有日志(默认等级) - 1:显示info、warning和error日志 - 2:显示warning和error信息 - 3:显示error日志信息 以设置日志级别为“3”为例,操作方法如下:

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    程,并在遇到任务异常更加准确的排查定位问题 父主题: Standard功能介绍

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练作业

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    States、Gradient、Model Parameter分布到不同的NPU 增加卡数重新训练,未解决找相关人员定位。 问题2:访问容器目录提示Permission denied 由于在容器中没有相应目录的权限,会导致访问提示Permission denied。可以在宿主机中对相关目录做权限放开,执行命令如下。

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 使用模型训练服务快速训练算法模型

    使用模型训练服务快速训练算法模型 本文档以硬盘故障检测的模型训练为例,介绍模型训练服务使用的全流程,包括数据集、特征工程、模型训练模型管理和模型验证,使开发者快速熟悉模型训练服务。 操作流程 前提条件 订购模型训练服务 访问模型训练服务 创建项目 数据集 特征工程 模型训练 模型管理

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    rser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。 多节点训练训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 注:ppo训练结束不会打印性能。建

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    rser查看loss收敛情况,将trainer_log.jsonl文件长传至可视化工具页面,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。 多节点训练训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 注:ppo训练结束不会打印性能。建

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    现还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    oss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。 多节点训练训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6

    来自:帮助中心

    查看更多 →

  • 查看日志和性能

    oss收敛情况,如图2所示。 单节点训练训练过程中的loss直接打印在窗口上。 多节点训练训练过程中的loss打印在第一个节点上。 图2 Loss收敛情况(示意图) 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了