中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    什么样的训练数据不适合深度学习 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据训练。De

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 微认证课程学习的形式是什么样的?

    微认证课程学习形式是什么样? 微认证课程学习分为在线视频学习和在线实验操作。 父主题: 微认证课程学习常见问题

    来自:帮助中心

    查看更多 →

  • 开发者认证课程学习的形式是什么样的?

    开发者认证课程学习形式是什么样? 开发者认证课程学习分为在线视频学习和在线实验操作。 父主题: 开发者认证课程学习常见问题

    来自:帮助中心

    查看更多 →

  • 什么样的用户可以使用数据探索?

    什么样用户可以使用数据探索? 数据探索目标用户是全网用户。 父主题: 数据探索

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供一站式深度学习平台服务,内置大量优化网络模型,以便捷、高效方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelAr

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    补全过程。 数据清洗是在数据校验基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入正样本和负样本,对数据进行清洗,保留用户想要类别,去除用户不想要类别。 数据选择:数据选择一般是指从全量数据中选择数据子集过程。 数据可以通过相似度或者深

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    放,对用户问泛化能力越强,识别准确率越低。 针对历史版本模型,可以根据当前模型调节直接返回答案阈值。 在“模型管理”页面,在模型列表操作列单击“调整阈值”。 图6 调整阈值 如下图所示,您可以根据实际需求,选择合适阈值,然后单击“确定”。 用户问法与标准问相似度大于直接回答阈值时,直接返回相应答案。

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    情基系数。 返回结果数据。 算法应用场景 数字人语音驱动算法可用于短视频制作、直播、交互等场景。在特定场景中,可替代人快速生成视频内容,以提升内容生成效率。 算法目的意图 通过学习语音与表情基系数关系,实现使用语音生成视频能力。在使用数据人形象生成视频场景,包括短视频制作

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    1]之间,是机器学习领域里常用二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下模型分布式训练,大幅度提升模型训练速度,满足海量样本数据加速训练需求。 图17

    来自:帮助中心

    查看更多 →

  • 超过最大递归深度导致训练作业失败

    超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认递归深度,导致训练失败。 处理方法

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 Mo

    来自:帮助中心

    查看更多 →

  • 自动学习为什么训练失败?

    况执行3。 自动学习项目不同导致失败原因可能不同。 图像识别训练失败请检查是否存在损坏图片,如有请进行替换或删除。 物体检测训练失败请检查数据集标注方式是否正确,目前自动学习仅支持矩形标注。 预测分析训练失败请检查标签列选取。标签列目前支持离散和连续型数据,只能选择一列。

    来自:帮助中心

    查看更多 →

  • 自动学习训练作业失败

    会导致训练作业运行失败。 对于数据集中列过滤策略如下所示: 如果某一列空缺比例大于系统设定阈值(0.9),此列数据训练时将被剔除。 如果某一列只有一种取值(即每一行数据都是一样),此列数据训练时将被剔除。 对于非纯数值列,如果此列取值个数等于行数(即每一行数值都

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中数据处理”菜单下面的数据处理算子。 模型包

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    测等等。不同项目对数据要求,使用AI开发手段也是不一样。 准备数据 数据准备主要是指收集和预处理数据过程。 按照确定分析目的,有目的性收集、整合相关数据数据准备是AI开发一个基础。此时最重要是保证获取数据真实可靠性。而事实上,不能一次性将所有数据都采集全,因

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了