AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习自定义浮点精度 更多内容
  • 固定精度型

    固定精度型 名称 描述 存储空间 取值范围 字面量 DECIMAL 固定精度的十进制数。精度最高支持到38位,但精度小于18位能保障性能最好。 Decimal有两个输入参数: precision:总位数,默认38 scale:小数部分的位数,默认0 说明: 如果小数位为零,即十进制(38

    来自:帮助中心

    查看更多 →

  • 精度问题诊断

    得到和标杆数据相同的输出,因此可以判断出转换得到的text_encoder模型是产生pipeline精度误差的根因。通过下一小节可以进一步确认模型精度的差异。 父主题: 模型精度调优

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 准备工作

    模型的超参通常可能调整的主要有学习率、batch size、并行切分策略、学习率warm-up、模型参数、FA配置等。用户在进行NPU精度和GPU精度比对前,需要保证两边的配置一致。 表1 超参说明 超参 说明 学习率 影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可

    来自:帮助中心

    查看更多 →

  • 迁移学习

    单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 生成数据 > 生成源 数据实例 ”。界面新增“生成迁移后的源数据实例”内容。 对应参数说明,如表6所示。 表6 生成迁移后的源数据实例参数说明 参数 参数说明 数据集 迁移后源数据对应的数据集。 数据集实例 源数据迁移后生成的数据集实例名,可自定义命名。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 方案概述

    业知识与场景需求的深度融合,为客户提供 NLP、CV、多模态等领域的模型应用解决方案,帮助企业解决特定的业务问题。 方案架构 天宽昇腾云行业大模型适配服务通过深度学习算法优化与高效计算,结合华为昇腾算力,为各行业提供全面的大模型迁移、适配与优化服务。天宽通过深度优化昇腾算力,结合

    来自:帮助中心

    查看更多 →

  • 管理功能配置

    长整型、浮点型、浮点型(自定义精度)、布尔值、日期、枚举、分类、URL和文件类型。 数量:用于约束应用运行态下该实体可添加对应扩展属性类型的数量。 如果应用的数据库类型为mysql,文本、长文本、布尔、日期、分类类型的属性数量不可超过200个,整型、长整型、浮点型、浮点型(自定义

    来自:帮助中心

    查看更多 →

  • 车辆高程精度(ele

    车辆高程精度(ele_confidence) 数值 含义 0 不具备或不可用 1 500米 2 200米 3 100米 4 50米 5 20米 6 10米 7 5米 8 2米 9 1米 10 50厘米 11 20厘米 12 10厘米 13 5厘米 14 2厘米 15 1厘米 父主题:

    来自:帮助中心

    查看更多 →

  • Msprobe精度比对

    Msprobe精度比对 精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,

    来自:帮助中心

    查看更多 →

  • 为什么有时候用浮点数做等值比较查不到数据

    为什么有时候用浮点数做等值比较查不到数据 原因分析 浮点数的等值比较问题是一种常见的浮点数问题。因为在计算机中,浮点数存储的是近似值而不是精确值,所以等值比较、数学运算等场景很容易出现预期外的情况。 MySQL中涉及浮点数的类型有float和double。如下示例中遇到的问题: 解决方案

    来自:帮助中心

    查看更多 →

  • 为什么有时候用浮点数做等值比较查不到数据

    为什么有时候用浮点数做等值比较查不到数据 原因分析 浮点数的等值比较问题是一种常见的浮点数问题。因为在计算机中,浮点数存储的是近似值而不是精确值,所以等值比较、数学运算等场景很容易出现预期外的情况。 MySQL中涉及浮点数的类型有float和double。如下示例中遇到的问题: 解决方案

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了