AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中无监督学习 更多内容
  • 大模型开发基本概念

    监督信号直接从数据本身派生。 有监督学习监督学习是机器学习任务的一种。它从有标记的训练数据推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程,只对模型的一部分参数进行更新,而

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    如图1所示,数据标注支持选择租户OBS桶资源的数据进行标注。标注后的数据存放在原存储空间中。用户可以使用“数据加载”工具,将数据从OBS空间迁移到数据服务 MRS ,进而在“数据建模”和“数据处理”对MRS已标注数据进行数据处理,最后通过“运营中心>数据集发布”发布数据集。在“模型训练服务”,可以订阅数据集进行模型训练。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 功能特性

    名单库管理策略 您可自定义上传和添加情报/白名单到OBS桶,异步同步到 威胁检测服务 ,上传后检测服务将优先关联检测名单库的IP和 域名 ,及时发现(情报)/忽略(白名单)名单库IP/域名地址的活动,降低检测响应时间,减轻服务运行负载。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    的是使得属于同一类别的数据间的相似性尽可能大,不同类别的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 与分类不同,聚类分析数据对象,而不考虑已知的类标号(一般训练数据不提供类标号)。聚类可以产生这种标号。对象根据最大化类内

    来自:帮助中心

    查看更多 →

  • 应用场景

    注。 数据处理 数据处理是 数据湖 数据管理的重要部分。可以通过数据处理,将用户的原始数据转换成目标模型数据格式。 时序数据标注 标注是KPI异常检测非常重要的数据,可以提升监督学习训练过程KPI检测准确率,在监督学习做算法验证评估: 监督学习:使用标注工具对原始数据进行标注

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    invalid_device fstab的设备检查 当前实例的/etc/fstab文件配置的某个设备不存在,可能会导致实例无法启动。 guestos.filesystem.device_mount_failure fstab的设备挂载状态检查 该实例存在未在/etc/fstab配置自动挂载的云盘,可能会导致实例无法启动。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    请按照本节的操作顺序在算法工程完成数据迁移,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习的具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    个人中心页面(我的岗位、我的技能) 在“我的学习”的页面,点击每个具体的课程卡片,进入到课程详情页面。可以按“进行、已完成,必修,选修”过滤,可以按课程标题搜索 图6 我的学习的数据列表页面 课程的详情页面,可以直接开始学习; 每个课程有多个章节,可以开始学习具体的每个章节。目前支持视频、PDF两种格式的课程。

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据处理场景介绍 ModelArts平台提供的数据处理功能,基本目的是从大量的、杂乱章的、难以理解的数据抽取或者生成对某些特定的人们来说是有价值、有意义的数据。当数据采集和接入之后,数据一般是不能直接满足训练要求的。为了保障数据质量,以免对后续操作(如数据标注、模型训练等)带

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对标签数据进行标注,节点的相似度越大,标签越容易传播。

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    学习技术,同时ModelArts是一站式的 AI开发平台 ,从数据标注、算法开发、模型训练及部署,管理全周期的AI流程。直白点解释,ModelArts包含并支持DLS的功能特性。当前,DLS服务已从华为云下线,深度学习技术相关的功能可以直接在ModelArts中使用,如果您是DLS

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    为了让 问答机器人 更加智能,回答更加准确,您可以通过训练模型来提升问答机器人的效果。 问答训练通过用户问法对机器人进行测试,在匹配问题的返回结果,按相似度得分进行倒序排序,正确匹配的问题出现在前一、三、五位的占比将作为衡量模型效果的指标,数值越高代表模型效果越好。 高级版、专业版、旗舰版机器人支持问答模型训练。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了