AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中防止过拟合的方法 更多内容
  • 欠拟合的解决方法有哪些?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网络:学

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    用于定义路径删除机制删除概率。路径删除是一种正则化技术,它在训练过程随机删除一部分网络连接,以防止模型拟合。这个值越大,删除路径越多,模型正则化效果越强,但同时也可能会降低模型拟合能力。取值范围:[0,1)。 特征删除概率 用于定义特征删除机制删除概率。特征删除

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    言模型中生成文本随机性和创造性,调整模型softmax输出层预测词概率。其值越大,则预测词概率方差减小,即很多词被选择可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应的不同输出之间的一致性。

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    说明 field_name 是 数据在数据流字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上完整路径,包括模型结构和模型权值。 is_dl4j_model

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    如何调整训练参数,使盘古大模型效果最优 模型微调参数选择没有标准答案,不同场景,有不同调整策略。一般微调参数影响会受到以下几个因素影响: 目标任务难度:如果目标任务难度较低,模型能较容易学习知识,那么少量训练轮数就能达到较好效果。反之,若任务较复杂,那么可能就需要更多训练轮数。 数据量级:

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    说明 field_name 是 数据在数据流字段名。 图像分类field_name类型需声明为ARRAY[TINYINT]。 文本分类field_name类型需声明为String。 model_path 是 模型存放在OBS上完整路径,包括模型结构和模型权值。 is_dl4j_model

    来自:帮助中心

    查看更多 →

  • 职业认证考试的学习方法

    职业认证考试学习方法 华为云职业认证 提供在线学习/导师面授+在线测试+真实环境实践,理论与实践结合学习模式,帮助您轻松通过认证。 您可以通过如下途径进行职业认证学习: 进入华为云开发者学堂职业认证,按照页面指引在线学习认证课程。 在HALP处报名认证培训课程,由专业导师进行面授培训。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型总是重复相同的回答

    “核采样”等参数设置,适当增大其中一个参数值,可以提升模型回答多样性。 数据质量:请检查训练数据是否存在文本重复异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置不合理而导致拟合,该现象会更加明显。请检查训练参数 “训练轮次”或

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    这种情况可能是由于以下原因导致,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了欠拟合拟合。请检查训练参数 “训练轮次”或“学习率”等参数设置,根据实际情况调整训练参数,帮助模型更好学习。 Pro

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了拟合。请检查训练参数 “训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 数据质量:请检查训练数据质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 定位类中的方法

    定位类方法 一个搜索查询class:vet AND method:test匹配所有名称带有test方法,并且属于名称带有vet类。 一个搜索查询class:test AND (method:upd OR method:del)匹配所有名称带有upd或del方法,并且属于名称中带有test的类。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型的回答中会出现乱码

    训练参数设置:若数据质量存在问题,且因训练参数设置不合理而导致拟合,该现象会更加明显。请检查训练参数 “训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 推理参数设置:请检查推理参数“温度”或“核采样”等参数设置,适当减小其中一个参数值,可以提升模型回答的确定性,避免生成异常内容。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    1]之间,是机器学习领域里常用二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    步骤: 选择合适模型:根据任务目标选择适当模型。 模型训练:使用处理后数据集训练模型。 超参数调优:选择合适学习率、批次大小等超参数,确保模型在训练过程能够快速收敛并取得良好性能。 开发阶段关键是平衡模型复杂度和计算资源,避免拟合,同时保证模型能够在实际应用中提供准确的预测结果。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来最低值。 热身比例 热身比例是指在模型训练过程逐渐增加学习过程。在训练初始阶段,模型权重通常是随机初始化,此时模型预测能力较弱。如果直接使用较大学习率进行训练,

    来自:帮助中心

    查看更多 →

  • 如何评估微调后的盘古大模型是否正常

    如何评估微调后盘古大模型是否正常 评估模型效果方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线变化趋势来评估训练效果,确认训练过程是否出现了拟合或欠拟合等异常情况。 模型评估:使用平台“模型评估”功能,“模型评估”将对您之前上传测试集进

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    模型微调是指调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习,微调用于改进预训练模型性能。 支持将平台资产中心预置部分模型作

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    node使用率已经超过了80%,可能导致在这些分区上无法创建新文件 guestos.filesystem.invalid_device fstab设备检查 当前实例/etc/fstab文件配置某个设备不存在,可能会导致实例无法启动。 guestos.filesystem

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了