AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习中的结构化概率模型 更多内容
  • 大数据分析

    运行越来越多CPU资源来提供充足算力。采用按需实例会在成本可控上遇到较大挑战。 竞享实例应用 客户通过使用竞享实例来降低用云成本,并在预算范围内尽可能扩大集群规模,提升业务效率。客户要面对最大挑战是一定概率实例终止情况,通过保留一定量按需实例作为竞享实例BackUP

    来自:帮助中心

    查看更多 →

  • 应用场景

    全方位检测:提供多模态综合审核方案,对视频内容画面、声音、文字进行全方位解析。 内容审核 -文档 网盘存储与共享 精准检测网盘用户上传文档内包含图片及文本存在敏感、色情、违禁等风险内容,规避平台内容风险。 企业内部文档 对企业内部文档进行全面图文内容合规检测,识别潜在违规内容,维护企业形象。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    为什么微调后盘古大模型只能回答训练样本问题 当您将微调模型部署以后,输入一个已经出现在训练样本问题,模型生成结果很好,一旦输入了一个从未出现过数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致,建议您依次排查: 训练参数设置:您可以通过绘制

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    智能体将深度学习算法及药物分析服务融入药物研发过程,让药企能更快速高效地完成药物研发,节约研发成本。 产品优势 提供开放、易于扩展平台架构。 提供端到端AI赋能平台加速AI研发和应用。 提供针对医疗行业AI自动建模工具。 提供医疗领域专业预置资产,提升企业效率。 内

    来自:帮助中心

    查看更多 →

  • 功能介绍

    提升模型训练速度,满足海量样本数据加速训练需求。 图17 支持训练过程多个GPU运行指标监控 支持在线模型评估,在不进行模型发布前提下直接查看模型解译效果,支持上传文件、WMTS和WMS图层进行模型评估。 集成主流深度学习框架,包括PyTorch,TensorFlow,J

    来自:帮助中心

    查看更多 →

  • 智能文档解析

    智能文档解析 功能介绍 智能文档解析基于领先深度学习技术,对含有结构化信息文档图像进行键值对提取、 表格识别 与版面分析并返回相关信息。不限制版式情况,可支持多种证件、票据和规范行业文档,适用于各类行业场景。 应用场景 金融:银行回单、转账存单、理财信息截图等。 政务:身份证、结婚证、居住证、各类企业资质证照。

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习图像分类或物体检测算法时,标注完成数据在进行模型训练后,训练结果为图片异常。针对不同异常情况说明及解决方案参见表1。 表1 自动学习训练图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 执行作业

    常规配置:通过界面点选算法使用常规参数,具体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50的整数。

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    一些常用的指标,如准确率、召回率、AUC等,能帮助您有效评估,最终获得一个满意模型。 部署模型 模型开发训练,是基于之前已有数据(有可能是测试数据),而在得到一个满意模型之后,需要将其应用到正式实际数据或新产生数据,进行预测、评价、或以可视化和报表形式把数据高价值信息以精辟易懂形式提供给决策人员,帮助其制定更加正确的商业策略。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网络:学

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    V2025预测,到2025年,企业人工智能利用率将达到86%。新需求,新技术,新产品,成功解决方案和具备对应能力开发工程师、规划设计人员和工程人员,对于这场变革和企业蜕变更是缺一不可关键。基于此,华为云推出了华为企业人工智能高级开发者培训专业服务,旨在培养具有图像处理、语

    来自:帮助中心

    查看更多 →

  • 结构化数据

    结构化数据 上传结构化数据 搜索结构化数据文件

    来自:帮助中心

    查看更多 →

  • 结构化抽取

    结构化抽取 信息抽取函数 交互界面配置 代码编辑 父主题: 配置信息抽取

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人 支持基础版、高级版、专业版、旗舰版四种规格,各规格差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 自动学习生成的模型,存储在哪里?支持哪些其他操作?

    自动学习生成模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成模型,不支持下载使用。 图1 自动学习生成模型

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    值范围为0~1小数。 树数量 定义XGBoost算法决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了