GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习怎么利用gpu 更多内容
  • 利用合约查询数据

    利用合约查询数据 合约调用信息构建。 接口方法 ContractRawMessage.class public Invocation buildInvocation(String chainId, String name, String function, String[] args)

    来自:帮助中心

    查看更多 →

  • 利用合约查询数据

    利用合约查询数据 合约调用信息构建。 接口方法 ContractRawMessage.class public RawMessage buildInvokeRawMsg(String chainId, String name, String function, String[] args)

    来自:帮助中心

    查看更多 →

  • 利用合约查询数据

    利用合约查询数据 查询请求消息构建 接口函数 func (msg *ContractRawMessage) BuildInvokeMessage(chainID string, name string, function string, args []string) (*common

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    GPU函数概述 Serverless GPU是一种高度灵活、高效利用、按需分配GPU计算资源的新兴云计算服务GPU能力Serverless化,通过提供一种按需分配的GPU计算资源,在一定范围内有效地解决原有GPU长驻使用方式导致的低资源利用率、高使用成本和低弹性能力等痛点问题。本文将介绍Serverless

    来自:帮助中心

    查看更多 →

  • 训练任务

    八爪鱼自动驾驶平台的多机分布式训练功能可以帮助用户加快模型训练速度,提高训练效率,并支持更大规模的深度学习任务。通过多机分布式训练,用户可以将训练任务分配到多台计算机或 服务器 上并行进行,充分利用硬件资源,加快模型收敛速度,提高训练效果。平台支持多种深度学习框架,如TensorFlow、PyTorch等,并提供简单易用

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型E CS GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    选择命名空间,如未创建,单击“创建命名空间”。命名空间类型分为“通用计算型”和“GPU加速型”: 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 访问密钥 单击“点击上传”,

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 高性能调度

    当前很多业务有波峰和波谷,部署服务时,为了保证服务的性能和稳定性,通常会按照波峰时需要的资源申请,但是波峰的时间可能很短,这样在非波峰时段就有资源浪费。另外,由于在线作业SLA要求较高,为了保证服务的性能和可靠性,通常会申请大量的冗余资源,因此,会导致资源利用率很低、浪费比较严重。将这

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    GPU视图 GPU资源指标可以衡量GPU性能和使用情况,包括GPU利用率、温度、显存等方面的监控数据,帮助您掌控GPU运行状况。 指标说明 图1 GPU资源指标 表1 GPU图表说明 图表名称 单位 说明 集群-显存使用率 百分比 集群的显存使用率 计算公式:集群内容器显存使用总量/集群内显存总量

    来自:帮助中心

    查看更多 →

  • 准备GPU资源

    准备GPU资源 本文介绍如何在使用GPU能力前所需要的基础软件、硬件规划与准备工作。 基础规划 配置 支持版本 集群版本 v1.25.15-r7及以上 操作系统 华为云欧拉操作系统 2.0 系统架构 X86 GPU类型 T4、V100 驱动版本 GPU虚拟化功能仅支持470.57

    来自:帮助中心

    查看更多 →

  • 创建GPU应用

    com/gpu 指定申请GPU的数量,支持申请设置为小于1的数量,比如 nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 指定nvidia.com/gpu后,在调度时不会将负载调

    来自:帮助中心

    查看更多 →

  • 监控GPU资源

    监控GPU资源 本章介绍如何在UCS控制台界面查看GPU资源的全局监控指标。 前提条件 完成GPU资源准备。 当前本地集群已创建GPU资源。 当前本地集群开启了监控能力。 GPU监控 登录UCS控制台,在左侧导航栏选择“容器智能分析”。 选择对应的集群并开启监控,详细操作请参照集群开启监控。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 大数据分析

    人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。

    来自:帮助中心

    查看更多 →

  • 使用AutoGenome镜像

    使用AutoGenome镜像 AutoGenome是Notebook镜像,利用AutoML等技术帮助科研工作者在基因组学数据上端到端实现深度学习网络搜索,训练,评估,预测和解释的工具包。 使用AutoGenome镜像的详细步骤如下所示: 步骤1:订阅镜像 步骤2:创建Notebook

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了