GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习用几块gpu 更多内容
  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 推理服务

    :推理服务发布成功,单击图标可以跳转至推理服务的快速验证界面,用户可在此界面上对当前发布的在线推理服务进行效果验证。 :推理服务发布失败,可重新发布。 等待推理服务发布成功后,单击件模型所在行,对应“操作”列的图标。 进入推理服务快速验证界面,如图1所示。 图1 推理服务快速验证界面

    来自:帮助中心

    查看更多 →

  • GPU驱动异常怎么办?

    nvidia-smi: command not found 可能原因 云服务器 驱动异常、没有安装驱动或者驱动被卸载。 处理方法 如果未安装GPU驱动,请重新安装GPU驱动。 操作指导请参考:安装GPU驱动 如果已安装驱动,但是驱动被卸载。 执行history,查看是否执行过卸载操作。

    来自:帮助中心

    查看更多 →

  • 兼容Kubernetes默认GPU调度模式

    兼容Kubernetes默认GPU调度模式 开启GPU虚拟化后,默认该GPU节点不再支持使用Kubernetes默认GPU调度模式的工作负载,即不再支持使用nvidia.com/gpu资源的工作负载。如果您在集群中已使用nvidia.com/gpu资源的工作负载,可在gpu-device-p

    来自:帮助中心

    查看更多 →

  • 手动更新GPU节点驱动版本

    置为GPU插件配置中指定的版本。 如果需要稳定升级GPU节点驱动,推荐使用通过节点池升级节点的GPU驱动版本。 前提条件 需要使用kubectl连接到集群,详情请参见通过kubectl连接集群。 操作步骤 如果您需要使用指定的NVIDIA驱动版本,可以在节点安装新版本GPU驱动,操作步骤如下:

    来自:帮助中心

    查看更多 →

  • GPU实例故障分类列表

    GPU实例故障分类列表 GPU实例故障的分类列表如表1所示。 表1 GPU实例故障分类列表 是否可恢复故障 故障类型 相关文档 可恢复故障,可按照相关文档自行恢复 镜像配置问题 如何处理Nouveau驱动未禁用导致的问题 ECC错误 如何处理ECC ERROR:存在待隔离页问题 内核升级问题

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    执行以下命令,查看安装结果。 lspci -d 10de: 图1 安装结果 GPU指标采集需要依赖以下驱动文件,请检查环境中对应的驱动文件是否存在。如果驱动未安装,可参见(推荐)GPU加速型实例自动安装GPU驱动(Linux)。 Linux驱动文件 nvmlUbuntuNvidiaLibraryPath

    来自:帮助中心

    查看更多 →

  • 如何处理GPU掉卡问题

    a1),请继续按照处理方法处理;如果查找不到显卡或者显示状态为rev ff,请根据显卡故障诊断及处理方法进行故障诊断。规格对应显卡数量可以通过GPU加速型查询。 lspci | grep -i nvidia 处理方法 非CCE集群场景,建议尝试自行重装驱动,或升级驱动版本后执行nvidi

    来自:帮助中心

    查看更多 →

  • 功能介绍

    模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17 支持训练过程多个GPU运行指标监控 支持在线

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    选择命名空间,如未创建,单击“创建命名空间”。命名空间类型分为“通用计算型”和“GPU加速型”: 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 访问密钥 单击“点击上传”

    来自:帮助中心

    查看更多 →

  • 新建应用

    -o ${outputdir} ${input} 图3 镜像信息 选择CPU、GPU类型和大小,选择内存大小,内存单位为GB。 CPU架构依赖于制作镜像过程中选择的系统类型,以及制作镜像时所需的生物信息软件支持在X86还是ARM上运行。例如,GATK是基于X86指令集开发的生信软

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    恢复归档或深度归档存储对象 功能介绍 如果要获取归档存储或深度归档对象的内容,需要先将对象恢复,然后再执行下载数据的操作。对象恢复后,会产生一个标准存储类型的对象副本,也就是说会同时存在标准存储类型的对象副本和归档或深度归档存储类型的对象,在恢复对象的保存时间到期后标准存储类型的对象副本会自动删除。

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    用户授权。 注意事项 归档存储或深度归档存储的对象正在恢复的过程中,不支持修改恢复方式,不允许暂停或删除恢复任务。 数据恢复后,会产生一个标准存储类别的对象副本,即对象同时存在标准存储类别的对象副本和归档存储或深度归档存储类别的对象。归档存储或深度归档存储对象恢复完成时,对象的恢

    来自:帮助中心

    查看更多 →

  • 迁移环境准备

    Diffusion模型迁移到Ascend上进行推理。 方式二 ModelArts Lite DevServer:该环境为裸机开发环境,主要面向深度定制化开发场景。 优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。

    来自:帮助中心

    查看更多 →

  • T4 GPU设备显示异常

    T4 GPU设备显示异常 问题描述 使用NVIDIA Tesla T4 GPU 服务器 ,例如Pi2或G6规格,执行nvidia-smi命令查看GPU使用情况时,显示如下: No devices were found 原因分析 NVIDIA Tesla T4 GPU是NVIDIA的新版本,默认使用并开启GSP

    来自:帮助中心

    查看更多 →

  • Serverless GPU使用介绍

    Serverless GPU使用介绍 概述 应用场景 父主题: GPU函数管理

    来自:帮助中心

    查看更多 →

  • ERROR6203 GPU驱动未启动

    当前节点未启动GPU驱动。GPU驱动未启动。检查GPU当前状态:systemctl status nvidia-drivers-loader若nvidia驱动未启动,则启动nvidia驱动:systemctl start nvidia-drivers-loadersystemctl start nvidia-drivers-loader如

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)版本发布记录

    适配OS Ubuntu22.04 GPU驱动目录自动挂载优化 1.2.24 v1.19 v1.21 v1.23 v1.25 节点池支持配置GPU驱动版本 支持GPU指标采集 1.2.20 v1.19 v1.21 v1.23 v1.25 设置插件别名为gpu 1.2.17 v1.15 v1

    来自:帮助中心

    查看更多 →

  • 超过最大递归深度导致训练作业失败

    超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    弹性伸缩:支持工作负载和节点的弹性伸缩,可以根据业务需求和策略,经济地自动调整弹性计算资源的管理服务服务治理:深度集成应用服务网格,提供开箱即用的应用服务网格流量治理能力,用户无需修改代码,即可实现灰度发布、流量治理和流量监控能力。 容器运维:深度集成容器智能分析,可实时监控应用及资源,支持采集、管理、分析日

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了