超分辨率转换

超分辨率转换

    深度学习压缩代价函数 更多内容
  • 压缩NLP大模型

    在左侧导航栏中选择“模型开发 > 模型压缩”,单击界面右上角“创建压缩任务”。参考表1创建模型压缩任务。 表1 模型压缩任务参数说明 参数类别 参数名称 说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT8压缩策略,同等QPS目标下,INT8可以降低推理显存占用。

    来自:帮助中心

    查看更多 →

  • 使用MaaS压缩模型

    16两种压缩策略。 表1 压缩策略的适用场景 压缩策略 场景 SmoothQuant-W8A8 长序列的场景 大并发量的场景 AWQ-W4A16 小并发量的低时延场景 更少推理卡数部署的场景 约束限制 表2列举了支持模型压缩的模型,不在表格里的模型不支持使用MaaS压缩模型。 表2

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 优化器方法配置

    enable_change_hjcost 参数说明:控制优化器在Hash Join代价估算路径选择时,是否使用将内表运行时代价排除在Hash Join节点运行时代价外的估算方式。如果使用,则有利于选择条数少,但运行代价大的表做内表。 该参数属于SUSET类型参数,请参考表1中对应设置方法进行设置。

    来自:帮助中心

    查看更多 →

  • 行列存压缩

    来讲,压缩级别越高,压缩比也越大,压缩时间也越长;反之亦然。实际压缩比取决于加载的表数据的分布特征。 table.compress.level指定表数据同一压缩级别下的不同压缩水平,它决定了同一压缩级别下表数据的压缩比以及压缩时间。对同一压缩级别进行了更加详细的划分,为用户选择压

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC、RCFile、TextFi

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC,RCFile,TextFi

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 构建程序

    run(records[0]) 创建函数 创建函数的时候,必须选择委托包含OBS访问权限的委托,否则不能使用OBS服务。 登录函数工作流控制台,在左侧导航栏选择“函数 > 函数列表”,进入函数列表界面。 单击“创建函数”,进入创建函数流程。 选择“创建空白函数”,填写函数配置信息。 输入基础配置信息,完成后单击“创建函数”。

    来自:帮助中心

    查看更多 →

  • 排序策略

    径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 配置parquet表的压缩格式

    配置parquet表的压缩格式 配置场景 当前版本对于parquet表的压缩格式分以下两种情况进行配置: 对于分区表,需要通过parquet本身的配置项“parquet.compression”设置parquet表的数据压缩格式。如在建表语句中设置tblproperties:"parquet

    来自:帮助中心

    查看更多 →

  • 功能介绍

    集成主流深度学习框架,包括PyTorch,TensorFlow,Jittor,PaddlePaddle等,内置经典网络结构并支持用户自定义上传网络,同时,针对遥感影像多尺度、多通道、多载荷、多语义等特征,内置遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数

    来自:帮助中心

    查看更多 →

  • zstd压缩算法有什么优势?

    zstd压缩算法有什么优势? 问: zstd压缩算法有什么优势? 答: ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式。 具体详细请参考https://github.com/L-Angel/compress-demo。

    来自:帮助中心

    查看更多 →

  • 配置parquet表的压缩格式

    配置parquet表的压缩格式 配置场景 当前版本对于parquet表的压缩格式分以下两种情况进行配置: 对于分区表,需要通过parquet本身的配置项“parquet.compression”设置parquet表的数据压缩格式。如在建表语句中设置tblproperties:"parquet

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了