AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练模型的过程 更多内容
  • 最新动态

    面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中清晰人脸上传至您后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔客流信息。 车牌识别技能 面向智慧商超车牌识别技能。

    来自:帮助中心

    查看更多 →

  • 训练过程读取数据

    训练过程读取数据 在ModelArts上训练模型,输入输出数据如何配置? 如何提升训练效率,同时减少与OBS交互? 大量数据文件,训练过程中读取数据效率低? 使用Moxing时如何定义路径变量? 父主题: Standard训练作业

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    用于指定预处理数据工作线程数。随着线程数增加,预处理速度也会提高,但也会增加内存使用。 per_device_train_batch_size 1 指定每个设备训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可参考表1

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练作业

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    String 请求失败时错误信息,请求成功时无此字段。 error_code String 请求失败时错误码,请求成功时无此字段。 job_id Long 训练作业ID。 job_name String 训练作业名称。 create_time Long 训练作业创建时间。 示例

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    用于指定预处理数据工作线程数。随着线程数增加,预处理速度也会提高,但也会增加内存使用。 per_device_train_batch_size 1 指定每个设备训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可参考表1

    来自:帮助中心

    查看更多 →

  • 执行作业

    体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度

    来自:帮助中心

    查看更多 →

  • 产品概述

    感,脱敏)设定、元数据发布等,为数据源计算节点提供全生命周期可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)多方样本对齐和训练模型保护。 数据使用监管 为数据参与方提供可视化数据使用流图

    来自:帮助中心

    查看更多 →

  • 打包训练模型

    参数说明 归档名 归档模型包名。 归档版本 归档训练模型版本。 默认版本为1.0.0。 生成模型包 是否直接在归档同时打包模型包。 选择“是”,表示同时对模型执行归档和打包操作;选择“否”表示仅对模型执行归档操作。默认选择“是”。 包含代码 模型包是否包含训练和推理相关代码。 选

    来自:帮助中心

    查看更多 →

  • 计费说明

    对业务场景为极特殊复杂场景起因或政府单位进行需求调研分析,简单场景工作量预计不超过30人天 1,200,000.00 每套 算法设计与优化服务 AI算法设计与优化-基础版 对人工智能场景为简单场景企业或政府单位进行算法设计,形成可帮助算法能力较弱技术人员完成后续开发技术方案报告。简单场景工作量预计不超过17人天

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    用于指定预处理数据工作线程数。随着线程数增加,预处理速度也会提高,但也会增加内存使用。 per_device_train_batch_size 1 指定每个设备训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可参考表1

    来自:帮助中心

    查看更多 →

  • 使用模型训练服务快速训练算法模型

    使用模型训练服务快速训练算法模型 本文档以硬盘故障检测模型训练为例,介绍模型训练服务使用全流程,包括数据集、特征工程、模型训练模型管理和模型验证,使开发者快速熟悉模型训练服务。 操作流程 前提条件 订购模型训练服务 访问模型训练服务 创建项目 数据集 特征工程 模型训练 模型管理

    来自:帮助中心

    查看更多 →

  • 场景介绍

    。 它基于一个预先训练模型,通过调整模型参数,使其能够更好地拟合特定任务数据分布。 与从头开始训练模型相比,监督式微调能够充分利用预训练模型知识和特征表示,从而加速训练过程并提高模型性能。 LoRA微调LoRA(Low-Rank Adaptation):微调是一种用于调整大型预训练模型的高效微调技术。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    用于指定预处理数据工作线程数。随着线程数增加,预处理速度也会提高,但也会增加内存使用。 per_device_train_batch_size 1 指定每个设备训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积步数,这可以增加批次大小而不增加内存消耗。可参考表1

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    必须修改。用于指定模板。如果设置为"qwen",则使用QWEN模板进行训练,模板选择可参照表1中template列 max_samples 1000 用于指定训练过程中使用最大样本数量。如果设置了这个参数,训练过程将只使用指定数量样本,而忽略其他样本。这可以用于控制训练过程规模和计算需求 overwrite_cache

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    准备训练代码 模型训练必备要素包括训练代码、训练框架、训练数据。 训练代码包含训练作业启动文件或启动命令、训练依赖包等内容。 当使用预置框架创建训练作业时,训练代码开发规范可以参考开发用于预置框架训练代码。 当使用 自定义镜像 创建训练作业时,训练代码开发规范可以参考开发用于自定义镜像训练的代码。

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进预训练模型性能。

    来自:帮助中心

    查看更多 →

  • 创建工程

    当“开发环境”选择“WebIDE”时展示,用于设置当前环境规格对应环境实例。 如果当前选定规格有环境实例,可选择已存在实例。 如果当前选定规格没有可用实例,可选择“新建一个新环境”。 单击“确定”。 进入联邦学习工程详情界面,如图1所示。界面说明如表2所示。 图1 联邦学习工程详情界面 表2 界面说明 区域

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人 支持基础版、高级版、专业版、旗舰版四种规格,各规格差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了