AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习训练的终止条件是 更多内容
  • 创建纵向联邦学习作业

    XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量

    来自:帮助中心

    查看更多 →

  • 超过最大递归深度导致训练作业失败

    超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认递归深度,导致训练失败。 处理方法

    来自:帮助中心

    查看更多 →

  • 终止合约

    project_id String 项目ID。 获取方法请参考获取项目ID。 instance_id String 实例ID,开通交换数据平台实例ID。 获取方法请参考获取实例ID。 connector_id String 连接器ID,指定交换数据平台下连接器ID。 获取方法请参考获取连接器ID。

    来自:帮助中心

    查看更多 →

  • 终止作业

    终止作业 场景描述 当作业提交后未执行完成时,手动终止作业。API调用方法请参见如何调用API。 约束限制 集群已创建成功并处于“运行中”。 已获取待创建集群区域项目ID,请参考获取项目ID获取。 已获取集群ID,即创建集群成功后返回结果中“cluster_id” 或参考获取集群ID获取。

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    8:图像饱和度与训练数据集特征分布存在较大偏移。 9:图像色彩丰富程度与训练数据集特征分布存在较大偏移。 10:图像清晰度与训练数据集特征分布存在较大偏移。 11:图像目标框数量与训练数据集特征分布存在较大偏移。 12:图像中目标框面积标准差与训练数据集特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 基本概念

    特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,界面右上角图标中“数据处理”菜单下面的数据处理算子。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    运行越来越多CPU资源来提供充足算力。采用按需实例会在成本可控上遇到较大挑战。 竞享实例应用 客户通过使用竞享实例来降低用云成本,并在预算范围内尽可能扩大集群规模,提升业务效率。客户要面对最大挑战一定概率实例终止情况,通过保留一定量按需实例作为竞享实例BackUP

    来自:帮助中心

    查看更多 →

  • 产品功能

    业,根据合作方已提供数据,编写相关sql作业并获取您所需要分析结果,同时能够在作业运行保护数据使用方数据查询和搜索条件,避免因查询和搜索请求造成数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供在保障用户数据安全前提下,利用多方数据实现联合建模,曾经被称为联邦机器学习。

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 Mo

    来自:帮助中心

    查看更多 →

  • 终止某个WDL

    终止某个WDL 功能介绍 终止某个WDL execution执行,使任务状态置为停止运行状态(由于没有继续执行功能,终止后就无法运行)。 URI POST /v1/{project_id}/executions-extend/{execution_id}/stop 表1 路径参数

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    于商业理解,整理AI开发框架和思路。例如,图像分类、物体检测等等。不同项目对数据要求,使用AI开发手段也是不一样。 准备数据 数据准备主要是指收集和预处理数据过程。 按照确定分析目的,有目的性收集、整合相关数据,数据准备AI开发一个基础。此时最重要保证获取

    来自:帮助中心

    查看更多 →

  • 模型训练

    行过程中计算图、各种指标随着时间变化趋势以及训练中使用到数据信息。 单击图标,查看模型评估报告。 评估指标:可以通过数值和图表方式展示各项指标的数据信息。 超参:展示训练集、测试集和标签列信息。 任务系统参数:展示训练任务配置参数信息。 父主题: 创建联邦学习工程

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    智能问答机器人 支持基础版、高级版、专业版、旗舰版四种规格,各规格差异如表1所示。 表1 机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √

    来自:帮助中心

    查看更多 →

  • 终止质检任务

    400 错误请求:请检查请求路径及参数。 响应状态码: 401 未授权:1. 请确认是否购买了相关服务。 2. 请联系客服人员检查您账号的当前状态。 响应状态码: 404 请求内容未找到:请检查请求路径。 响应状态码: 500 业务失败:请依次确认您请求中各参数取值。 错误码

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下模型分布式训练,大幅度提升模型训练速度,满足海量样本数据加速训练需求。 图17

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习图像分类或物体检测算法时,标注完成数据在进行模型训练后,训练结果为图片异常。针对不同异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 计费说明

    对业务场景为极特殊复杂场景起因或政府单位进行需求调研分析,简单场景工作量预计不超过30人天 1,200,000.00 每套 算法设计与优化服务 AI算法设计与优化-基础版 对人工智能场景为简单场景企业或政府单位进行算法设计,形成可帮助算法能力较弱技术人员完成后续开发技术方案报告。简单场景工作量预计不超过17人天

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了