AI开发平台ModelArts 

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

 
 

    深度学习需要ssd 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS) SSD云盘和SSD本地盘的区别?

    GaussDB (DWS) SSD云盘和SSD本地盘的区别? SSD云盘支持后期进行扩容,推荐您使用SSD云盘。两者的区别如下: SSD云盘: 使用SSD类型的EVS作为数据存储介质,存储容量更加灵活,且可以随着数据的增长,进行磁盘扩容操作。 由于SSD云盘不和E CS 规格进行强绑定,因此可以根据实际需求进行规格调整。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在 对象存储服务 (OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 通用型SSD V2

    通用型SSD V2 通用型SSD V2给不同的云硬盘容量提供了基准IOPS3000、基准吞吐量125MiB/s的性能。 通用型SSD V2在保持存储容量大小不变的情况下,您可以结合实际业务的需求量,灵活配置云盘的IOPS、吞吐量,从而实现云盘容量与性能解耦。 云硬盘性能 表1 云硬盘性能数据表

    来自:帮助中心

    查看更多 →

  • 迁移学习

    请按照本节的操作顺序在算法工程中完成数据迁移,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备 > 绑定源数

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    适合平时不会持续高压力使用CPU,但偶尔需要提高计算性能完成工作负载的场景,可用于轻量级Web 服务器 、开发、测试环境以及中低性能数据库等场景。 GPU加速型:提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等。仅支持1

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 极速型SSD V2(公测)

    极速型SSD V2(公测) 极速型SSD V2具备超高IOPS、超高吞吐量和超低时延等多维度的超高性能。 极速型SSD V2在保持存储容量大小不变的情况下,您可以结合实际业务的需求量,灵活配置云盘的IOPS,从而实现云盘容量与性能解耦。 极速型SSD V2云硬盘正在公测中,当前仅

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • GPU加速型

    TOPS 机器学习深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习、训练推理、

    来自:帮助中心

    查看更多 →

  • 本地SSD盘规格降配选不到资源

    本地SSD盘规格降配选不到资源 场景描述 RDS for MySQL本地SSD盘实例当前规格为4 vCPUs | 16 GB,当前存储容量700GB,需要降配至4 vCPUs | 8 GB,界面上选不到4 vCPUs | 8 GB资源。 图1 规格变更 原因分析 本地SSD盘规格

    来自:帮助中心

    查看更多 →

  • x86 V5实例(CPU采用Intel Skylake架构)

    20 GHz) 384 DDR4 RAM (GB) 2*800GB SSD RAID 1 + 10 * 800GB SSD 2 x 2*10GE 高性能计算型 主要使用在受计算限制的高性能处理器的应用程序上。它需要更多处理器核数、大量的内存和高吞吐量的存储系统。该规格使用V5 CP

    来自:帮助中心

    查看更多 →

  • x86 V4实例(CPU采用Intel Broadwell架构)

    SAS SSD System Disk RAID 1 + 4*3.2TB NVMe SSD 2 x 2*10GE GPU加速型 GPU加速型实例包括计算加速型(P系列)和图形加速型(G系列),提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了