AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习为什么效果好 更多内容
  • 横向比较提示词效果

    击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较提示词的效果,输入相同的变量值,查看两个提示词生成的结果。 图3 横向比对提示词效果 父主题: 横向比较提示词效果

    来自:帮助中心

    查看更多 →

  • 批量评估提示词效果

    批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 开发盘古大模型提示词工程

    来自:帮助中心

    查看更多 →

  • 为什么多轮问答场景的盘古大模型微调效果不好

    A:你可以做什么? B:我可以做很多事情,比如xxxx A:你可以讲个笑话吗? B:当然可以啦,以下是xxxx A:可以把这个笑话改成xxxx B:的,以下是修改后的xxxx 拼接后的微调数据格式示例: {"context": ["你是谁?", "您好,我是盘古大模型。", "你可以做什么?"

    来自:帮助中心

    查看更多 →

  • 数据量足够,为什么盘古大模型微调效果仍然不好

    数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    管理员需要对固定的学员进行连续多次培训,需要提前设置规则,让学员不断地在规定时间内进行学习学习项目支持设置循环任务,任务每执行一次后都会复制原有项目(包括项目内容、规则、参与对象),并在复制的新项目中对设定的参与对象进行重复的任务分派。 操作路径:培训-学习-学习项目-更多-循环任务设置 图12 循环任务设置1

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 为什么其他大模型适用的提示词在盘古大模型上效果不佳

    为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、

    来自:帮助中心

    查看更多 →

  • 如何提升模型训练效果?

    在模型构建过程中,您可能需要根据训练结果,不停的调整数据、训练参数或模型,以获得一个满意的模型。更新模型时,可以通过如下几方面提升模型训练效果:检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类

    来自:帮助中心

    查看更多 →

  • 华为数据治理效果

    华为 数据治理 效果 以财经为例,在数据治理前存在很多问题,如由于IT系统的烟囱式建设,导致一个角色跨多个IT系统操作,效率低;数据获取难,手工处理多,单一个收入管理需要从5个系统导出数据,约11个人总共花费50小时完成分析。 通过数据治理,华为可以做到3天月度财务报告出初稿、5天月

    来自:帮助中心

    查看更多 →

  • 验证并行查询效果

    验证并行查询效果 本章节使用TPCH测试工具测试并行查询对22条QUERY的性能提升情况。 测试的实例信息如下: 实例规格:32 vCPUs | 256 GB 内核版本:2.0.26.1 并行线程数:16 测试数据量:100GB 操作步骤 生成测试数据。 请在https://github

    来自:帮助中心

    查看更多 →

  • 功能介绍

    可定制化 针对客户的特定场景需求,定制垂直领域的 语音识别 模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    的开发体验,助力开发者快速了解并学习大模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型 通过AI Gallery的模型在线模型体验,可以实现模型服务的即时可用性,开发者无需经历繁琐的环境配置步骤,即可直观感受模型效果,快速尝鲜大模型,真正达到“即时接入,即时体验”的效果。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 学习率调整策略 用于选择学习率调度器的类型。学习率调度器可以在训练过程中动态地调整学习率,以改善模型的训练效果。目前支持CosineDecayLR调度器。 变量权重 变量权重 训练数据设置完成后,会显示出各变量以及默认的权重。您可以基于变量的重要情况调整权重。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 方案概述

    成快速户型图生成 户型图部件自动识别:利用深度学习技术,自动识别2D户型图的墙体、门窗、比例尺。 户型图精校:利用比例尺生成3D真实世界坐标点,呈现精准户型 图2 户型图 硬装、柜体智能布置 自动化精装设计:基于AI和大数据,通过深度学习16.3亿图纸方案,实现精装方案自动设计.

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了