虚拟私有云 VPC

虚拟私有云(Virtual Private Cloud)是用户在华为云上申请的隔离的、私密的虚拟网络环境。用户可以自由配置VPC内的IP地址段、子网、安全组等子服务,也可以申请弹性带宽和弹性IP搭建业务系统

 

    深度学习推理网络 更多内容
  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 调度概述

    实现快速高效地处理推理和图像识别等工作。 功能 描述 参考文档 NPU调度 NPU调度可以指定Pod申请NPU的数量,为工作负载提供NPU资源。 NPU调度 Volcano调度 Volcano是一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 排序策略

    下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 最新动态

    GPU加速型,新增P2s型 弹性云服务器 。 P2s型弹性 云服务器 采用NVIDIA Tesla V100 GPU,能够提供超高的通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算、计算流体动力学、计算金融、地震分析、分子建模、基因组学等领域都能表现出巨大的计算优势。 商用 GPU加速型 2021年5月

    来自:帮助中心

    查看更多 →

  • 在推理生产环境中部署推理服务

    推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    odel入参同系列,但是权重参数远小于--model指定的模型。若未使用投机推理功能,则无需配置。 --num-speculative-tokens:投机推理小模型每次推理的token数。若未使用投机推理功能,则无需配置。参数--num-speculative-tokens需要和--speculative-model

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    里是ppl的配置项。由于离线执行推理,消耗的显存相当庞大。其中以下参数需要根据实际来调整。 batch_size, 推理时传入的 prompts 数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    odel入参同系列,但是权重参数远小于--model指定的模型。若未使用投机推理功能,则无需配置。 --num-speculative-tokens:投机推理小模型每次推理的token数。若未使用投机推理功能,则无需配置。参数--num-speculative-tokens需要和--speculative-model

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite k8s Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 推理场景介绍

    推理场景介绍 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了